9 research outputs found
Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy.
Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families
Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring
Background: Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders, by whole-exome sequencing in families with one or more members affected by multi-locus imprinting disturbance. Methods: Whole-exome sequencing was performed in 38 pedigrees where probands had multi-locus imprinting disturbance, in five of whom, maternal variants in NLRP5 have previously been found. Results: We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal-effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. Conclusion: The identification of 20 putative maternal-effect variants in 38 families affected by multi-locus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.<br/
A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young.
Maturity-onset diabetes of the young (MODY) is a monogenic, autosomal dominant subtype of early-onset diabetes mellitus due to defective insulin secretion by the pancreatic beta-cell in humans. Five different genes have been identified including those encoding the tissue-specific transcription factors expressed in pancreatic beta-cells, i.e. HNF-4alpha (MODY1), HNF-1alpha (MODY3), IPF-1 (also known as PDX-1, MODY4) and HNF-1beta (MODY5). Analyzing the transcription of the HNF-4alpha gene, we now identify an alternative promoter, P2, which is 46 kb 5' to the previously identified P1 promoter of the human gene. Based on RT-PCR this distant upstream P2 promoter represents the major transcription site in pancreatic beta-cells, but is also used in hepatic cells. Transfection assays with various deletions and mutants of the P2 promoter reveal functional binding sites for HNF-1alpha, HNF-1beta and IPF-1, the other transcription factors known to encode MODY genes. We demonstrate the significance of this alternative promoter in a large MODY family where a mutated IPF-1 binding site in the P2 promoter of the HNF-4alpha gene co-segregates with diabetes (LOD score 3.25). These data suggest a regulatory network of the four MODY transcription factors interconnected at the distant upstream P2 promoter of the HNF-4alpha gene
Molecular Karyotyping as a relevant diagnostic tool in children with growth retardation with Silver-Russell features
OBJECTIVE: To determine the contribution of submicroscopic chromosomal imbalances to the etiology of Silver-Russell syndrome (SRS) and SRS-like phenotypes. STUDY DESIGN: We performed molecular karyotyping in 41 patients with SRS or SRS-like features without known chromosome 7 and 11 defects using the Affymetrix SNP Array 6.0 system (Affymetrix, High Wycombe, United Kingdom). RESULTS: In 8 patients, pathogenic copy number variations with sizes ranging from 672 kb to 9.158 Mb were identified. The deletions in 1q21, 15q26, 17p13, and 22q11 were associated with known microdeletion syndromes with overlapping features with SRS. The duplications in 22q13 and Xq25q27 represent unique novel copy number variations but have an obvious influence on the phenotype. In 5 additional patients, the pathogenetic relevance of the detected variants remained unclear. CONCLUSION: Pathogenic submicroscopic imbalances were detectable in a significant proportion of patients with short stature and features reminiscent of SRS. Therefore, molecular karyotyping should be implemented in routine diagnostics for growth-retarded patients with even slight dysmorphisms suggestive for SRS
Phenotypic spectrum associated with CASK loss-of-function mutations
BackgroundHeterozygous mutations in the CASK gene in Xp11.4 have been shown to be associated with a distinct brain malformation phenotype in females, including disproportionate pontine and cerebellar hypoplasia.MethodsThe study characterised the CASK alteration in 20 new female patients by molecular karyotyping, fluorescence in situ hybridisation, sequencing, reverse transcriptase (RT) and/or quantitative real-time PCR. Clinical and brain imaging data of a total of 25 patients were reviewed.Results11 submicroscopic copy number alterations, including nine deletions of ∼11 kb to 4.5 Mb and two duplications, all covering (part of) CASK, four splice, four nonsense, and one 1 bp deletion are reported. These heterozygous CASK mutations most likely lead to a null allele. Brain imaging consistently showed diffuse brainstem and cerebellar hypoplasia with a dilated fourth ventricle, but of remarkably varying degrees. Analysis of 20 patients in this study, and five previously reported patients, revealed a core clinical phenotype comprising severe developmental delay/intellectual disability, severe postnatal microcephaly, often associated with growth retardation, (axial) hypotonia with or without hypertonia of extremities, optic nerve hypoplasia, and/or other eye abnormalities. A recognisable facial phenotype emerged, including prominent and broad nasal bridge and tip, small or short nose, long philtrum, small chin, and/or large ears.ConclusionsThese findings define the phenotypic spectrum associated with CASK loss-of-function mutations. The combination of developmental and brain imaging features together with mild facial dysmorphism is highly suggestive of this disorder and should prompt subsequent testing of the CASK gene.status: publishe