3 research outputs found

    A polygenic and phenotypic risk prediction for polycystic ovary syndrome evaluated by phenomewide association studies

    Get PDF
    Context: As many as 75% of patients with polycystic ovary syndrome (PCOS) are estimated tobe unidentified in clinical practice. Objective: Utilizing polygenic risk prediction, we aim to identify the phenome-widecomorbidity patterns characteristic of PCOS to improve accurate diagnosis and preventivetreatment.Design, Patients, and Methods: Leveraging the electronic health records (EHRs) of 124 852individuals, we developed a PCOS risk prediction algorithm by combining polygenic risk scores(PRS) with PCOS component phenotypes into a polygenic and phenotypic risk score (PPRS). Weevaluated its predictive capability across different ancestries and perform a PRS-based phenomewide association study (PheWAS) to assess the phenomic expression of the heightened risk ofPCOS.Results: The integrated polygenic prediction improved the average performance (pseudo-R2)for PCOS detection by 0.228 (61.5-fold), 0.224 (58.8-fold), 0.211 (57.0-fold) over the null modelacross European, African, and multi-ancestry participants respectively. The subsequent PRSpowered PheWAS identified a high level of shared biology between PCOS and a range ofmetabolic and endocrine outcomes, especially with obesity and diabetes: "morbid obesity","type 2 diabetes", "hypercholesterolemia", "disorders of lipid metabolism", "hypertension",and "sleep apnea" reaching phenome-wide significance.Conclusions: Our study has expanded the methodological utility of PRS in patient stratificationand risk prediction, especially in a multifactorial condition like PCOS, across different geneticorigins. By utilizing the individual genome-phenome data available from the EHR, our approachalso demonstrates that polygenic prediction by PRS can provide valuable opportunities todiscover the pleiotropic phenomic network associated with PCOS pathogenesis.Abbreviations: AA, African ancestry; ANOVA, analysis of variance; BMI, body mass index; EA,European ancestry; EHR, electronic health records; eMERGE, electronic Medical Records andGenomics Network; GWAS, genome-wide association study; IBD, identity-by-descent; ICDCM, International Classification of Diseases, Clinical Modification; LD, linkage disequilibrium;MA, multi-ancestry; MAF, minor allele frequency; NIH, National Institutes of Health; PCA,principal component analysis; PheWAS, phenome-wide association study; PCOS, polycysticovary syndrome; PPRS, polygenic and phenotypic risk score; PRS, polygenic risk sc

    Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol

    No full text
    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previous

    Rare and low-frequency coding variants alter human adult height

    No full text
    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of
    corecore