722 research outputs found
Gap States in Dilute Magnetic Alloy Superconductors
We study states in the superconducting gap induced by magnetic impurities
using self-consistent quantum Monte Carlo with maximum entropy and formally
exact analytic continuation methods. The magnetic impurity susceptibility has
different characteristics for T_{0} \alt T_{c0} and T_{0} \agt T_{c0}
(: Kondo temperature, : superconducting transition temperature)
due to the crossover between a doublet and a singlet ground state. We
systematically study the location and the weight of the gap states and the gap
parameter as a function of and the concentration of the
impurities.Comment: 4 pages in ReVTeX including 4 encapsulated Postscript figure
Physics of cuprates with the two-band Hubbard model - The validity of the one-band Hubbard model
We calculate the properties of the two-band Hubbard model using the Dynamical
Cluster Approximation. The phase diagram resembles the generic phase diagram of
the cuprates, showing a strong asymmetry with respect to electron and hole
doped regimes, in agreement with experiment. Asymmetric features are also seen
in one-particle spectral functions and in the charge, spin and d-wave pairing
susceptibility functions. We address the possible reduction of the two-band
model to a low-energy single-band one, as it was suggested by Zhang and Rice.
Comparing the two-band Hubbard model properties with the single-band Hubbard
model ones, we have found similar low-energy physics provided that the
next-nearest-neighbor hopping term t' has a significant value (). The parameter t' is the main culprit for the electron-hole asymmetry.
However, a significant value of t' cannot be provided in a strict Zhang and
Rice picture where the extra holes added into the system bind to the existing
Cu holes forming local singlets. We notice that by considering approximate
singlet states, such as plaquette ones, reasonable values of t', which capture
qualitatively the physics of the two-band model can be obtained. We conclude
that a single-band t-t'-U Hubbard model captures the basic physics of the
cuprates concerning superconductivity, antiferromagnetism, pseudogap and
electron-hole asymmetry, but is not suitable for a quantitative analysis or to
describe physical properties involving energy scales larger than about 0.5 eV.Comment: 14 pages, 16 figure
Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions
The nature of the Mott-Hubbard metal-insulator transition in the
infinite-dimensional Hubbard model is investigated by Quantum Monte Carlo
simulations down to temperature T=W/140 (W=bandwidth). Calculating with
significantly higher precision than in previous work, we show that the
hysteresis below T_{IPT}\simeq 0.022W, reported in earlier studies, disappears.
Hence the transition is found to be continuous rather than discontinuous down
to at least T=0.325T_{IPT}. We also study the changes in the density of states
across the transition, which illustrate that the Fermi liquid breaks down
before the gap opens.Comment: 4 pages, 4 eps-figures using epsf.st
Orbital-selective Mott transitions in the anisotropic two-band Hubbard model at finite temperatures
The anisotropic degenerate two-orbital Hubbard model is studied within
dynamical mean-field theory at low temperatures. High-precision calculations on
the basis of a refined quantum Monte Carlo (QMC) method reveal that two
distinct orbital-selective Mott transitions occur for a bandwidth ratio of 2
even in the absence of spin-flip contributions to the Hund exchange. The second
transition -- not seen in earlier studies using QMC, iterative perturbation
theory, and exact diagonalization -- is clearly exposed in a low-frequency
analysis of the self-energy and in local spectra.Comment: 4 pages, 5 figure
From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model
The magnetic properties of the two-channel periodic Anderson model for
uranium ions, comprised of a quadrupolar and a magnetic doublet are
investigated through the crossover from the mixed-valent to the stable moment
regime using dynamical mean field theory. In the mixed-valent regime
ferromagnetism is found for low carrier concentration on a hyper-cubic lattice.
The Kondo regime is governed by band magnetism with small effective moments and
an ordering vector \q close to the perfect nesting vector. In the stable
moment regime nearest neighbour anti-ferromagnetism dominates for less than
half band filling and a spin density wave transition for larger than half
filling. is governed by the renormalized RKKY energy scale \mu_{eff}^2
^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure
Superconductivity in the Two-Band Hubbard Model in Infinite Dimensions
We study a two-band Hubbard model in the limit of infinite dimensions, using
a combination of analytical methods and Monte-Carlo techniques. The normal
state is found to display various metal to insulators transitions as a function
of doping and interaction strength. We derive self-consistent equations for the
local Green's functions in the presence of superconducting long-range order,
and extend previous algorithms to this case. We present direct numerical
evidence that in a specific range of parameter space, the normal state is
unstable against a superconducting state characterized by a strongly frequency
dependent order-parameter.Comment: 12 pages (14 figures not included, available upon request), Latex,
LPTENS Preprint 93/1
Coherence scale of the Kondo lattice
It is shown that the large-N approach yields two energy scales for the Kondo
lattice model. The single-impurity Kondo temperature, , signals the onset
of local singlet formation, while Fermi liquid coherence sets in only below a
lower scale, . At low conduction electron density
("exhaustion" limit), the ratio is much smaller than unity, and
is shown to depend only on and not on the Kondo coupling. The physical
meaning of these two scales is demonstrated by computing several quantities as
a function of and temperature.Comment: 4 pages, 4 eps figures. Minor changes. To appear in Phys. Rev. Let
Electronic Structure of Paramagnetic V_2O_3: Strongly Correlated Metallic and Mott Insulating Phase
LDA+DMFT, the computation scheme merging the local density approximation and
the dynamical mean-field theory, is employed to calculate spectra both below
and above the Fermi energy and spin and orbital occupations in the correlated
paramagnetic metallic and Mott insulating phase of V_2O_3. The self-consistent
DMFT equations are solved by quantum Monte Carlo simulations. Room temperature
calculations provide direct comparison with experiment. They show a significant
increase of the quasiparticle height in comparison with the results at 1160 K.
We also obtain new insights into the nature of the Mott-Hubbard transition in
V_2O_3. Namely, it is found to be strikingly different from that in the
one-band Hubbard model due to the orbital degrees of freedom. Furthermore we
resolve the puzzle of the unexpectedly small Mott gap in Cr-doped V_2O_3.Comment: 14 pages, 22 figure
Single-hole dynamics in the half-filled two-dimensional Kondo-Hubbard model
We consider the Kondo lattice model in two dimensions at half filling. In
addition to the fermionic hopping integral and the superexchange coupling
the role of a Coulomb repulsion in the conduction band is investigated.
We find the model to display a magnetic order-disorder transition in the U-J
plane with a critical value of J_c which is decreasing as a function of U. The
single particle spectral function A(k,w) is computed across this transition.
For all values of J > 0, and apart from shadow features present in the ordered
state, A(k,w) remains insensitive to the magnetic phase transition with the
first low-energy hole states residing at momenta k = (\pm \pi, \pm \pi). As J
-> 0 the model maps onto the Hubbard Hamiltonian. Only in this limit, the
low-energy spectral weight at k = (\pm \pi, \pm \pi) vanishes with first
electron removal-states emerging at wave vectors on the magnetic Brillouin zone
boundary. Thus, we conclude that (i) the local screening of impurity spins
determines the low energy behavior of the spectral function and (ii) one cannot
deform continuously the spectral function of the Mott-Hubbard insulator at J=0
to that of the Kondo insulator at J > J_c. Our results are based on both, T=0
Quantum Monte-Carlo simulations and a bond-operator mean-field theory.Comment: 8 pages, 7 figures. Submitted to PR
Depleted Kondo Lattices
We consider a two dimensional Kondo lattice model with exchange J and hopping
t in which three out of four impurity spins are removed in a regular way. At
the particle-hole symmetric point the model may be studied with auxiliary field
quantum Monte Carlo methods without sign problems. To achieve the relevant
energy scales on finite clusters, we introduce a simple method to reduce size
effects by up to an order of magnitude in temperature. In this model, a
metallic phase survives up to arbitrarily low temperatures before being
disrupted by magnetic fluctuations which open a gap in the charge sector. We
study the formation of the heavy-electron state with emphasis on a crossover
scale T* defined by the maximum in the resistivity versus temperature curve.
The behavior of thermodynamic properties such as specific heat as well as spin
and charge uniform susceptibilities are studied as the temperature varies in a
wide range across T*. Within our accuracy T* compares well to the Kondo scale
of the related single impurity problem. Finally our QMC resuls are compared
with mean-field approximations.Comment: 12 pages, 13 figures. Submitted to Phys. Rev.
- …