29 research outputs found

    IL-22 Protects Against Liver Pathology and Lethality of an Experimental Blood-Stage Malaria Infection

    Get PDF
    The host response following malaria infection depends on a fine balance between levels of pro-inflammatory and anti-inflammatory mediators resulting in the resolution of the infection or immune-mediated pathology. Whilst other components of the innate immune system contribute to the pro-inflammatory milieu, T cells play a major role. For blood-stage malaria, CD4+ and γή T cells are major producers of the IFN-γ that controls parasitemia, however, a role for TH17 cells secreting IL-17A and other cytokines, including IL-17F and IL-22 has not yet been investigated in malaria. TH17 cells have been shown to play a role in some protozoan infections, but they also are a source of pro-inflammatory cytokines known to be involved in protection or pathogenicity of infections. In the present study, we have investigated whether IL-17A and IL-22 are induced during a Plasmodium chabaudi infection in mice, and whether these cytokines contribute to either protection or to pathology induced during the infection. Although small numbers of IL-17- and IL-22-producing CD4 T cells are induced in the spleens of infected mice, a more pronounced induction is observed in the liver, where increases in mRNA for IL-17A and, to a lesser extent, IL-22 were observed and CD8+ T cells, rather than CD4 T cells, are a major source of these cytokines in this organ. Although the lack of IL-17 did not affect the outcome of infection or pathology, lack of IL-22 resulted in 50% mortality within 12 days after infection with significantly greater weight loss at the peak of infection and significant increase in alanine transaminase in the plasma in the acute infection. As parasitemias and temperature were similar in IL-22 KO and wild-type control mice, our observations support the idea that IL-22 but not IL-17 provides protection from the potentially lethal effects of liver damage during a primary P. chabaudi infection

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Cerebral Edema and Cerebral Hemorrhages in Interleukin-10-Deficient Mice Infected with Plasmodium chabaudi

    No full text
    During a Plasmodium chabaudi infection in interleukin-10 (IL-10) knockout mice, there is greater parasite sequestration, more severe cerebral edema, and a high frequency of cerebral hemorrhage compared with infection of C57BL/6 mice. Anti-tumor necrosis factor alpha treatment ameliorated both cerebral edema and hemorrhages, suggesting that proinflammatory responses contributed to cerebral complications in infected IL-10(−/−) mice

    Mosquito transmission of the rodent malaria parasite <it>Plasmodium chabaudi</it>

    No full text
    Abstract Background Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. Methods Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. Results and conclusions This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.</p

    Rapid Changes in Transcription Profiles of the Plasmodium yoelii yir Multigene Family in Clonal Populations: Lack of Epigenetic Memory?

    No full text
    The pir multigene family, found in the genomes of Plasmodium vivax, P. knowlesi and the rodent malaria species, encode variant antigens that could be targets of the immune response. Individual parasites of the rodent malaria Plasmodium yoelii, selected by micromanipulation, transcribe only 1 to 3 different pir (yir) suggesting tight transcriptional control at the level of individual cells. Using microarray and quantitative RT-PCR, we show that despite this very restricted transcription in a single cell, many yir genes are transcribed throughout the intra-erythrocytic asexual cycle. The timing and level of transcription differs between genes, with some being more highly transcribed in ring and trophozoite stages, whereas others are more highly transcribed in schizonts. Infection of immunodeficient mice with single infected erythrocytes results in populations of parasites each with transcriptional profiles different from that of the parent parasite population and from each other. This drift away from the original ‘set ’ of transcribed genes does not appear to follow a preset pattern and ‘‘epigenetic memory’’ of the yir transcribed in the parent parasite can be rapidly lost. Thus, regulation of pir gene transcription may be different from that of the well-characterised multigene family, var, ofPlasmodium falciparum

    Epitope-Specific Regulation of Immunoglobulin Class Switching in Mice Immunized with Malarial Merozoite Surface Proteins

    No full text
    Antibodies that bind to Fc receptors and activate complement are implicated in the efficient control of pathogens, but the processes that regulate their induction are still not well understood. To investigate antigen-dependent factors that regulate class switching, we have developed an in vivo model of class switching to immunoglobulin G2b (IgG2b) using the malaria antigen Plasmodium falciparum merozoite surface protein 2 (MSP2). C57BL/6 mice were immunized with recombinant proteins representing discrete domains of MSP2, and a T-cell epitope (C8) was identified within the conserved C terminus of the protein that preferentially induces IgG2b antibodies. The ability of C8 to induce IgG2b is ablated in both homozygous gamma interferon-negative and interleukin 10-negative mice. The IgG2b-inducing properties of C8 override the IgG1-inducing properties of both the fusion protein partner, glutathione S-transferase, and the adjuvant. Furthermore, when attached to other proteins that normally induce IgG1 responses, C8 induces a switch to IgG2b secretion. This is the first description of a defined T-cell epitope that drives specific IgG2b subclass switching, and our data offer proof of the concept that chimeric vaccines incorporating specific T-cell “switch epitopes” might be used to enhance qualitative aspects of the antibody response

    Distinct Trafficking and Localization of STEVOR Proteins in Three Stages of the Plasmodium falciparum Life Cycle

    No full text
    The genome of Plasmodium falciparum harbors three extensive multigene families, var, rif, and stevor (for subtelomeric variable open reading frame), located mainly in the subtelomeric regions of the parasite's 14 chromosomes. STEVOR variants are known to be expressed in asexual parasites, but no function has as yet been ascribed to this protein family. We have examined the expression of STEVOR proteins in intraerythrocytic sexual stages, gametocytes, and extracellular sporozoites isolated from infected Anopheles mosquitoes. In gametocytes, stevor transcripts appear transiently early in development but STEVOR proteins persist for several days and are transported out of the parasite, travel through the host cell cytoplasm, and localize to the erythrocyte plasma membrane. In contrast to asexual parasites, gametocytes move STEVOR to the periphery via a trafficking pathway independent of Maurer's clefts. In sporozoites, STEVOR appear dispersed throughout the cytoplasm in vesicle-like structures. The pattern of STEVOR localization we have observed in gametocytes and sporozoites differs significantly from that in asexual parasite stages. STEVOR variants are therefore likely to perform different functions in each stage of the parasites life cycle in which they occur
    corecore