9 research outputs found

    Small intestinal bacterial overgrowth syndrome

    No full text
    Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO

    Bacteriocinogeny in experimental pigs treated with indomethacin and Escherichia coli Nissle

    No full text
    AIM: To evaluate bacteriocinogeny in short-term high-dose indomethacin administration with or without probiotic Escherichia coli Nissle 1917 (EcN) in experimental pigs

    The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs.

    No full text
    BACKGROUND:Memantine, currently available for the treatment of Alzheimer's disease, is an uncompetitive antagonist of the N-methyl-D-aspartate type of glutamate receptors. Under normal physiologic conditions, these unstimulated receptor ion channels are blocked by magnesium ions, which are displaced after agonist-induced depolarization. In humans, memantine administration is associated with different gastrointestinal dysmotility side effects (vomiting, diarrhoea, constipation, motor-mediated abdominal pain), thus limiting its clinical use. Mechanism of these motility disorders has not been clarified yet. Pigs can be used in various preclinical experiments due to their relatively very similar gastrointestinal functions compared to humans. The aim of this study was to evaluate the impact of a single and repeated doses of memantine on porcine gastric myoelectric activity evaluated by means of electrogastrography (EGG). METHODS:Six adult female experimental pigs (Sus scrofa f. domestica, mean weight 41.7±5.0 kg) entered the study for two times. The first EGG was recorded after a single intragastric dose of memantine (20 mg). In the second part, EGG was accomplished after 7-day intragastric administration (20 mg per day). All EGG recordings were performed under general anaesthesia. Basal (15 minutes) and study recordings (120 minutes) were accomplished using an EGG stand (MMS, Enschede, the Netherlands). Running spectral analysis based on Fourier transform was used. Results were expressed as dominant frequency of gastric slow waves (DF) and power analysis (areas of amplitudes). RESULTS:Single dose of memantine significantly increased DF, from basic values (1.65±1.05 cycles per min.) to 2.86 cpm after 30 min. (p = 0.008), lasting till 75 min. (p = 0.014). Basal power (median 452; inter-quartile range 280-1312 μV^2) raised after 15 min. (median 827; IQR 224-2769; p = 0.386; NS), lasting next 30 min. Repetitively administrated memantine caused important gastric arrhythmia. Basal DF after single and repeated administration was not different, however, a DF increase in the second part was more prominent (up to 3.18±2.16 after 15 and 30 min., p<0.001). In comparison with a single dose, basal power was significantly higher after repetitively administrated memantine (median 3940; IQR 695-15023 μV^2; p<0.001). Next dose of 20 mg memantine in the second part induced a prominent drop of power after 15 min. (median 541; IQR 328-2280 μV^2; p<0.001), lasting till 120 min. (p<0.001). CONCLUSIONS:Both single and repeated doses of memantine increased DF. Severe gastric arrhythmia and long-lasting low power after repeated administration might explain possible gastric dysmotility side effects in the chronic use of memantine

    The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs

    No full text
    Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20–30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans
    corecore