3 research outputs found

    Magnetic signature reproduction of ferromagnetic ships at arbitrary geographical position, direction and depth using a multi-dipole model

    No full text
    Abstract The reproduction of magnetic signatures is an important issue concerning the safety of ship traffic, as well as the identification and classification of vessels. Moreover, military applications of magnetic signatures and their reproduction refer to the activation or protection against activation of magnetic naval mines. Previous works on this subject focused on recording and replicating the signatures under the same conditions as those under which they were measured, e.g., on the same ship courses. In this article, much greater capabilities of the multi-dipole model are presented, including simultaneous identification of permanent and induced magnetism. Determining the dipole values using the data from cardinal directions gives the possibility of determining the magnetic field density at any trajectory (position), direction, or depth, with further reconstruction of the entire magnetic field on the basis of residual measurements. For the purpose of this article, a numerical test model of a corvette-type ship has been modelled in Opera simulation software for different geographical positions. The synthetic data from the simulator served as the data source for determining the parameters of the multi-dipole model and the reference data for the verification of the signatures reconstructed for other positions, directions, and depths than those used to determine the model parameters. To determine all permanent magnetization components, data sets were used for two different values of the external magnetic field vertical component. Finally, as a culmination of the demonstration of model universality, the entire magnetic field around the ship was reproduced for different control points on Earth, and for different courses and depths. Investigating the possibility of reconstructing the magnetic signature at a different geographic location than the place where the measurement was made for model synthesis is the main original issue considered in this paper

    Minimization of a ship's magnetic signature under external field conditions using a multi-dipole model

    No full text
    Abstract The paper addresses the innovative issue of minimizing the ship's magnetic signature under any external field conditions, i.e., for arbitrary values of ambient field modulus and magnetic inclination. Varying values of the external field, depending on the current geographical location, affect only the induced part of ship's magnetization. A practical problem in minimizing the ship signature is separating permanent magnetization from induced magnetization. When the ship position changes, a signature measurement has to be made under new magnetic field conditions to update the currents in the coils. This is impractical or even difficult to do (due to the need for a measuring ground), so there is a need to predict the ship's magnetization value in arbitrary geographical location conditions based on the reference signature determined on the measuring ground. In particular, the model predicting the signatures at a new geographical location must be able to separate the two types of magnetization, as permanent magnetization is independent of external conditions. In this paper, a FEM model of the vessel is first embedded in an external field and permanent magnetization is simulated using DC coils placed inside the model. Then, using the previously developed rules for data acquisition and determination of model parameters, a multi-dipole model is synthesized in which the induced and permanent parts are separated. The multi-dipole model thus developed has been successfully confronted with the initial model in FEM environment. The separation of permanent and induced magnetization allows the latter to be scaled according to new values of the external field. In the paper, the situation of determining a signature at one geographical position and its projection onto two other positions is analyzed. Having determined the signature with a high degree of accuracy anywhere in the world, it is possible to perform classical signature minimization by determining DC currents in coils placed inside the ship's hull. The paper also analyzes the effectiveness of ship's signature minimization and the influence of ship's course on the signature value. The advantage of the method presented in this paper is an integrated approach to the issue of scaling and minimization of ship magnetic signature, which has not been presented in the literature on such a scale before
    corecore