10 research outputs found

    Selected Natural Products in Neuroprotective Strategies for Alzheimer’s Disease—A Non-Systematic Review

    No full text
    Neurodegenerative disorders such as Alzheimer’s disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies—among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings

    Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles

    No full text
    Lungwort (Pulmonaria officinalis L., Boraginaceae) is considered to possess therapeutic properties and it has been traditionally used as a remedy against various lung disorders in many countries. Nevertheless, very few data concerning its phytochemical composition are available. This research aims to provide a detailed description of specialized metabolites from the aerial parts of lungwort. Nine previously undescribed and 36 known phenolic compounds were detected in the 50% methanolic extract. Following multistep preparative procedures, structures of newly discovered compounds were determined using one- and two-dimensional techniques of NMR spectroscopy. Among the identified compounds were caffeic acid esters with aliphatic hydroxycarboxylic acids, conjugates of dicaffeic acid with rosmarinic acid, and previously unknown isomers of isosalvianolic acid A and yunnaneic acid E, as well as other lignans. Concentrations of all identified phenolic derivatives in the investigated herbal material were estimated using a method based on liquid chromatography with high-resolution mass spectrometry detection. Seasonal changes in the concentration of metabolites were also investigated using targeted and untargeted metabolomics techniques

    Effect of the Production Parameters and In Vitro Digestion on the Content of Polyphenolic Compounds, Phenolic Acids, and Antiradical Properties of Innovative Snacks Enriched with Wild Garlic (<i>Allium ursinum</i> L.) Leaves

    No full text
    A new type of corn snack has been created containing additions of wild garlic (Allium ursinum L.). This medicinal and dietary plant has a long tradition of use in folk medicine. However, studies on wild garlic composition and activity are fairly recent and scarce. This research aimed to investigate the influence of the screw speed and A. ursinum amounts on the antiradical properties as well as the content of polyphenolic compounds and individual phenolic acids of innovative snacks enriched with wild garlic leaves. The highest radical scavenging activity and content of polyphenols and phenolic acids were found in the snacks enriched with 4% wild garlic produced using screw speed 120 rpm. The obtained findings demonstrated that snacks enriched with wild garlic are a rich source of polyphenolic compounds. Since the concentration of such compounds is affected by many factors, e.g., plant material, presence of other compounds, and digestion, the second aim of this study was to determine radical scavenging activity, the content of polyphenols, and individual phenolic acids of snacks after in vitro simulated gastrointestinal digestion. Using an in vitro two-stage model, authors noted a significant difference between the concentration of polyphenolic compounds and the polyphenol content of the plant material before digestion

    Fresh Chokeberry (<i>Aronia melanocarpa)</i> Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties

    No full text
    In this paper, the nutritional value and (selected) physiochemical properties of extruded snack pellets enriched with fresh chokeberry (Aronia melanocarpa) fruits were analyzed from the perspective of being a new product for the functional food sector. The purpose of this study was to determine the effect of the addition of fresh chokeberry and variation in content and screw speed on extruded snack pellet basic compositions, fatty acid profiles, antioxidant activity, as well as water absorption and solubility indexes, fat absorption and color profiles. The obtained results revealed a significant increase in antioxidant activity for all samples (above 90% of free radical scavenging) in comparison to potato-based control samples (just over 20% of free radical scavenging). The total phenolic content assay revealed the most valuable results for samples enriched with 30% chokeberry, while Ultra Performance Liquid Chromatography (UPLC) analysis allowed the determination of the most important phenolic acids. Of interest, chokeberry addition decreased the fat absorption index (FAI) after expansion by frying. Moreover, the highest values of crude protein and crude ash were observed in snack pellets supplemented by the application of 30% chokeberry. In such samples, the crude protein content was at the level of 4.75–4.87 g 100 g−1 and crude ash content at 4.88–5.07 g 100 g−1. Moreover, saturated fatty acids (SFA) content was lower in snack pellets with chokeberry addition, and increasing the amount of chokeberry additive from 10% to 30% in extruded snack pellet recipes resulted in more than double an increase in polyunsaturated fatty acids (PUFA) proportion in the total fatty acids

    Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    No full text
    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples

    The Effect of Fresh Kale (<i>Brassica oleracea</i> var. <i>sabellica</i>) Addition and Processing Conditions on Selected Biological, Physical, and Chemical Properties of Extruded Snack Pellets

    No full text
    The purpose of this study was to determine the effect of the addition of fresh kale and processing conditions on extruded pellet antioxidant activity and selected physicochemical properties. The results of the applied DPPH, FRAP, and TPC methods indicated that, for both 60 and 100 rpm screw speeds, snack pellet antioxidant activity and phenolic content were strongly linked to the fresh kale content, and these properties increased with the addition of this plant. The amount of fresh kale and the applied processing variables (extruder screw speed and the moisture content of the raw material blends) were also found to significantly affect the water absorption index, water solubility index, fat absorption index, fatty acid profile, and basic chemical composition of the obtained extrudates. The sample with the highest phenolic content (72.8 μg GAE/g d.w.), the most advantageous chemical composition (protein, ash, fat, carbohydrates, and fiber content), and high antioxidant properties was produced at a fresh kale content of 30%, a 36% moisture content, and a 100 rpm screw speed. The following phenolic acids were identified in this sample: protocatechuic, 4-OH-benzoic, vanillic, syringic, salicylic, caffeic, coumaric, ferulic, and sinapic. Sinapic acid was the prevailing phenolic acid

    Antioxidant and Cytotoxic Potential of <i>Carlina vulgaris</i> Extract and Bioactivity-Guided Isolation of Cytotoxic Components

    No full text
    Carlina vulgaris is a poorly understood plant in the context of biological activity, despite its widespread application in ethnomedicine in numerous European countries. The aim of this study was to assess the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and to isolate the plant components linked to this effect. Ultra-high performance liquid chromatography with a high-resolution/quadrupole time-of-flight mass spectrometer (UHPLC–HR/QTOF/MS–PDA) was used for the phytochemical characterization of the extract. Liquid–liquid extraction and preparative chromatography were employed for fractionation purposes. Our investigation demonstrated that the ethyl acetate fraction from C. vulgaris showed significant cytotoxicity, and a bioactivity-guided approach led to the isolation of oxylipins, including traumatic acid, pinellic acid, and 9,10-dihydroxy-8-oxsooctadec-12-enic acid. The structures of the compounds were confirmed by nuclear magnetic resonance spectroscopy. Among these compounds, the last one exhibited significant cytotoxicity, though without selectivity, and traumatic acid was characterized by mild cytotoxicity. The cytotoxicity was linked to intracellular reactive oxygen species generation

    The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (<i>Sorghum bicolor</i> (L.) Moench) and Sorghum-Enriched Pasta

    No full text
    The phenol content of sorghum is a unique feature among all cereal grains; hence this fact merits the special attention of scientists. It should be remembered that before polyphenols can be used in the body, they are modified within the digestive tract. In order to obtain more accurate data on the level and activity of tested ingredients after ingestion and digestion in the in vivo digestive tract, in vitro simulated digestion may be used. Thus, the aim of this study was to determine the content of polyphenols, flavonoids, and individual phenolic acids, as well as the antiradical properties, of sorghum and sorghum-enriched pasta before and after in vitro simulated gastrointestinal digestion. We observed that the total content of polyphenols decreased after gastric digestion of sorghum, and slightly increased after duodenal digestion. Moreover, the flavonoid content decreased after the first stage of digestion, while antioxidant properties increased after the first stage of digestion and slightly decreased after the second stage. The digestion of polyphenolics in sorghum is completely different to that in pasta—both in varieties with, and without, the addition of sorghum. For pasta, the content of total polyphenols and flavonoids, and free radical scavenging properties, decrease after each stage of digestion
    corecore