6 research outputs found

    The Effect of Modifier on the Microstructure of the AlSi10CuNiMn Alloy

    No full text
    This paper deals with different types of modifiers and their effect on the microstructure of the Al-Si alloy. For the purposes of this research, strontium, antimony and calcium were used as the modifiers of the AlSi10CuNiMn alloy. Unmodified alloy was cast in order to be compared with the alloy modified by different modifiers in various concentrations. The results of this research were analysed via light and electron microscopy

    INFLUENCE OF THE HOMOGENIZATION TEMPERATURE ON THE MICROSTRUCTURE AND PROPERTIES OF AlSi10CuNiMgMn ALLOY

    No full text
    The article examines the impact of changes in homogenization temperature in the hardening process on the microstructure of aluminum alloys. Samples where the research was conducted were cast from AlSi10CuNiMn alloy produced by gravity casting technology in metal mold. Subsequently, the castings were subjected to a heat treatment. In an experiment with changing temperature and staying time in the process of homogenization. The microstructure of the alloy was investigated by methods of light and electron microscopy. Examination of the microstructure has focused on changing the morphology of separated particles of eutectic silicon and intermetallic phases. Analysis of intermetallic phases was supplemented by an analysis of the chemical composition - EDS analysis. Effect of heat treatment on the properties investigated alloy was further complemented by Vickers microhardness. Investigated alloy is the result of longtime research conducted at Faculty of Production Technology and Management

    The Effect of Artificial Ageing on the Mechanical Properties of the EN AW 2017 Alloy

    No full text
    This paper deals with different types of artificial ageing and its effect upon the mechanical properties of an aluminium alloy. For the purposes of this research, the EN AW 2017 alloy was subjected to different types of heat treatment. These samples were subjected to different analyses. The results of hardness measurements (HB and HV) revealed the highest values of the non‑heat treated sample. The static tensile stress test proved the highest ductility of the heat treated samples. Overall, the best were revealed for the sample artificially aged at 160°C

    APPLICATION OF CHEMICAL PRE-TREATMENT ON THE POLISHED SURFACE OF ALUMINIUM ALLOYS

    No full text
    This paper reports the preparation and characterization of thin transparent nanolayers with phase composition ZrF4 and different modification of SiO2 with special focus on affecting the surface roughness of the material and the way of exclusion of the thin nanolayer on the surface of the polished aluminium material. The thin nanolayer was prepared by the sol-gel method. The final treatment based on PTFE was applied on the surface of some samples. This treatment is suitable for increasing wear resistance. The films were characterized with help of SEM microscopy and EDS analysis. The surface roughness was measured with classical surface roughness tester. The results on this theme have already published but not on the polished surface of the aluminium material. The results from the experiment show the problems with application of these nanolayers because a cracks were found on the surface of the material and deformations of the layer after application of the PTFE final layer. The surface layer formation is discussed

    APPLICATION OF CHEMICAL PRE-TREATMENT ON THE POLISHED SURFACE OF ALUMINIUM ALLOYS

    No full text
    This paper reports the preparation and characterization of thin transparent nanolayers with phase composition ZrF4 and different modification of SiO2 with special focus on affecting the surface roughness of the material and the way of exclusion of the thin nanolayer on the surface of the polished aluminium material. The thin nanolayer was prepared by the sol-gel method. The final treatment based on PTFE was applied on the surface of some samples. This treatment is suitable for increasing wear resistance. The films were characterized with help of SEM microscopy and EDS analysis. The surface roughness was measured with classical surface roughness tester. The results on this theme have already published but not on the polished surface of the aluminium material. The results from the experiment show the problems with application of these nanolayers because a cracks were found on the surface of the material and deformations of the layer after application of the PTFE final layer. The surface layer formation is discussed

    PTFE Based Multilayer Micro-Coatings for Aluminum AlMg3 Forms Used in Tire Production

    No full text
    The basic prerequisite for obtaining the coating of good quality is the production of a layer without the occurrence of surface defects. A possible solution to the occurrence of defects on the functional surface of the form is the application of a polytetrafluoroethylene (PTFE)-based coating. The coating helps to reduce surface roughness and “smooth” defects like pores and micro-shrinkage. For this reason, a new type and methodology of the coating were prepared to achieve more production cycles between the individual cleaning processes during the production of a tire. The subject of the study was the analysis of surface-applied micro-coatings, including the analysis of chemical composition by using energy-dispersive X-ray (EDX) and microstructure in the area of coatings. Detailed microstructural characterization of Alfipas 7818 and Alfiflon 39 and its imaging of surface structures were studied using atomic force microscopy. To examine the surface layer of the coatings, metallographic specimens of cross-sections (by means of a mold) were prepared and examined by light and electron microscopy. This new multilayer micro-coating with a thickness of 20–25 μm has been found to prevent form contamination during tire production and to extend production cycles by 200–400% between process cleanings. This finding was actually tested in the production of tires in the environment of a large manufacturing company
    corecore