27 research outputs found
Reconstructing depositional rates and their effect on paleoenvironmental proxies : the case of the Lau Carbon Isotope Excursion in Gotland, Sweden
Variations in depositional rates affect the temporal depositional resolutions of proxies used for paleoenvironmental reconstructions; for example, condensation can make reconstructed environmental changes appear very abrupt. This is commonly addressed by transforming proxy data using age models, but this approach is limited to situations where numerical ages are available or can be reliably inferred by correlation. Here we propose a new solution, in which relative age models are constructed based on proxies for depositional rates. As a case study, we use the onset of the late Silurian Lau Carbon Isotope Excursion (LCIE) in Gotland, Sweden. The studied succession is a gradual record of shallowing upward in a tropical, neritic carbonate platform. As proxies for depositional rates we tested thorium concentration, carbonate content, and the concentration of pelagic palynomorphs. These three proxies were used to create relative age models using the previously published DAIME model. We applied these models to transform the delta C-13(carb) values as well as concentrations of selected redox-sensitive elements. The three relative age models yielded qualitatively similar results. In our case study, variations in depositional rates resulted in peaks of redox proxies appearing up to 76% higher when taken at face value, compared to when accounting for these rates. In the most extreme cases, our corrections resulted in a reversal in the stratigraphic trend of elemental concentrations. This approach can be applied and developed across depositional setting and types of paleoenvironmental proxies. It provides a flexible tool for developing quantitative models to improve our understanding of the stratigraphic record
Increasing control over biomineralization in conodont evolution
Vertebrates use the phosphate mineral apatite in their skeletons, which allowed them to develop tissues such as enamel, characterized by an outstanding combination of hardness and elasticity. It has been hypothesized that the evolution of the earliest vertebrate skeletal tissues, found in the teeth of the extinct group of conodonts, was driven by adaptation to dental function. We test this hypothesis quantitatively and demonstrate that the crystallographic order increased throughout the early evolution of conodont teeth in parallel with morphological adaptation to food processing. With the c-axes of apatite crystals oriented perpendicular to the functional feeding surfaces, the strongest resistance to uniaxial compressional stress is conferred along the long axes of denticles. Our results support increasing control over biomineralization in the first skeletonized vertebrates and allow us to test models of functional morphology and material properties across conodont dental diversity
Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations
The Ordovician (âź487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (âź443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (> 5â°) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks
Growth allometry and dental topography in Upper Triassic conodonts support trophic differentiation and molar-like element function
Conodont elements have high rates of morphological evolution, but the drivers of this disparity are debated. Positive allometric relationships between dimensions of food-processing surfaces and entire P-1 elements have been used to argue that these elements performed mechanical digestion. If involved in food processing, the surface of the element should grow at a rate proportional to the increase in energy requirements of the animal. This inference of function relies on the assumption that the energy requirements of the animal grew faster ( approximately equal to mass(0.75)) than the tooth area ( approximately equal to mass(0.67)). We reevaluate this assumption based on metabolic rates across animals and calculate the allometry in platform-bearing P-1 elements of Late Triassic co-occurring taxa, Metapolygnathus communisti and Epigondolella rigoi, using 3D models of ontogenetic series. Positive allometry is found in platform and element dimensions in both species, supporting a grasping-tooth hypothesis, based on the assumption that metabolic rate in conodonts scaled with body mass similarly to that in fish and ectotherms. We also calculate the curvature of the P-1 platform surface using the Dirichlet normal energy (DNE) as a proxy for diet. DNE values increase with body mass, supporting the assumption that conodont metabolic rates increased faster than mass(0.67). We finally find that adults in both taxa differ in their food bases, which supports trophic diversification as an important driver of the remarkable disparity of conodont elements
Micropredators skulking in Silurian oceans?
Predation is potentially one of the most impactful evolutionary traits to have ever developed. Conodonts, an extinct group of early vertebrates, developed the first phosphatic dental tools, known as elements. Elements ranged from simple coniform types to more complex morphologies, predominantly in more derived species. Unlike the teeth of other vertebrates, these continuously grew throughout their lifetime by the periodic accretion of new lamellar tissues. This unique growth process continuously records chemical and physical characteristics throughout its lifespan which, when accessed, gives direct insight into the animalâs ecology and mode of life. Multiple lines of evidence, such as microwear studies and growth allometry, indicate that adult conodonts fed as predators and/or scavengers. There is little direct independent evidence for feeding ecologies in the earliest conodonts with coniform elements apparatuses, although previous modelling of element position and mechanical properties indicate these were capable of processing or manipulation of food. A direct test would be provided through evidence of tissue damage and its chemical composition. Our research focuses on samples of the coniform genus Panderodus (Family: Panderodontidae) from the Silurian of Poland and Ukraine. Panderodus has the best constrained apparatus reconstruction of any coniform conodont. Here we employ Backscatter electron (BSE) imaging and Energy-dispersive X-Ray spectroscopy (EDX) to identify growth dynamics, microwear, and chemical sclerochronology recorded within this unique mode of growth. Our results have direct implications not just for understanding the feeding mode of Panderodus, but also the origination of predation in the earliest vertebrates in the fossil record
Ultrastructures of porostromate microproblematica from a Mulde Event (Homerian, Silurian) bioherm in Podolia, Western Ukraine
The Mulde Event (Homerian, Wenlock) of the Silurian is characterized by a positive δ13C isotope excursion, a stepwise extinction of the hemipelagic fauna and an increase in non-skeletal deposits thought to be microbial, proliferating in shallow marine environments. There is little known about whether the proliferation of microbialites is due to reduced grazing, increased seawater saturation state or an increase in nutrient supply. We have studied a Mulde Event-associated buildup from the Muksha Formation in Bagovytsya, Podolia, Western Ukraine. This buildup differs from a typical Silurian skeletal reef in its low abundance of rugose and favositid corals. The framework of this reef is dominated by stromatoporoids, heliolitid corals and calcimicrobes, the last ones encrusting the stromatoporoids and shells and also forming oncoids. Several microproblematica are present, including Girvanella, Rothpletzella and Hedstroemia, along with Ortonella-like porostromate problematica. This study attempts to further identify the Ortonella-like porostromate problematica and Hedstroemia through SEM analyses which have revealed a recrystallized structure with microdolomite, indicating an originally high-Mg calcite composition. This suggests a red algal affinity or possibly a microbial origin. Our observations may help to constrain the environmental controls on the development of microbial- and microproblematica-dominated deposits during the Mulde Event