25 research outputs found

    Assessing Various Control Samples for Microarray Gene Expression Profiling of Laryngeal Squamous Cell Carcinoma

    Get PDF
    Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: "malignancy", which separated controls from malignant samples and "cell culture-microenvironment" which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples.</p

    Laryngeal squamous cell carcinoma cell lines show high tolerance for siRNA-mediated CDK1 knockdown

    Get PDF
    Alterations of the cell cycle checkpoints lead to uncontrolled cell growth and result in tumorigenesis. One of the genes essential for cell proliferation and cell cycle regulation is CDK1. This makes it a potential target in cancer therapy. In our previous study we have shown upregulation of this gene in laryngeal squamous cell carcinoma (LSCC). Here we analyze the impact of siRNA-mediated CDK1 knockdown on cell proliferation and viability, measured with cell growth monitoring and colorimetric test (CCK8 assay), respectively. We proved that a reduction of CDK1 expression by more than 50% has no effect on these cellular processes in LSCC cell lines (n=2). Moreover, using microarrays, we analyzed global gene expression deregulation in these cell lines after CDK1 knockdown. We searched for enriched ontologies in the group of identified 137 differentially expressed genes (>2-fold change). Within this group we found 3 enriched pathways: protein binding (GO:0005515), mitotic nuclear division (GO:0007067) and transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169) and a group of 11 genes encoding proteins for which interaction with CDK1 was indicated with the use of bioinformatic tools. Among these genes we propose three: CDK6, CALD1 and FYN as potentially dependent on CDK1

    Copy Number Gains of the Putative CRKL Oncogene in Laryngeal Squamous Cell Carcinoma Result in Strong Nuclear Expression of the Protein and Influence Cell Proliferation and Migration

    Get PDF
    Laryngeal squamous cell carcinoma is a major medical problem worldwide. Although our understanding of genetic changes and their consequences in laryngeal cancer has opened new therapeutic pathways over the years, the diagnostic as well as treatment options still need to be improved. In our previous study, we identifed CRKL (22q11) as a novel putative oncogene overexpressed and amplifed in a subset of LSCC tumors and cell lines. Here we analyze to what extent CRKL DNA copy number gains correlate with the higher expression of CRKL protein by performing IHC staining of the respective protein in LSCC cell lines (n=3) and primary tumors (n=40). Moreover, the importance of CRKL gene in regard to proliferation and motility of LSCC cells was analyzed with the application of RNA interference (siRNA). Beside the physiological cytoplasmic expression, the analysis of LSCC tumor samples revealed also nuclear expression of CRKL protein in 10/40 (25%) cases, of which three (7.5%), presented moderate or strong nuclear expression. Similarly, we observed a shift towards aberrantly strong nuclear abundance of the CRKL protein in LSCC cell lines with gene copy number amplifcations. Moreover, siRNA mediated silencing of CRKL gene in the cell lines showing its overexpression, signifcantly reduced proliferation (p<0.01) as well as cell migration (p<0.05) rates. Altogether, these results show that the aberrantly strong nuclear localization of CRKL is a seldom but recurrent phenomenon in LSCC resulting from the increased DNA copy number and overexpression of the gene. Moreover, functional analyses suggest that proliferation and migration of the tumor cells depend on CRKL expression.</p

    Loss of the MAF Transcription Factor in Laryngeal Squamous Cell Carcinoma

    Get PDF
    MAF is a transcription factor that may act either as a tumor suppressor or as an oncogene, depending on cell type. We have shown previously that the overexpressed miR-1290 influences MAF protein levels in LSCC (laryngeal squamous cell carcinoma) cell lines. In this study, we shed further light on the interaction between miR-1290 and MAF, as well as on cellular MAF protein localization in LSCC. We confirmed the direct interaction between miR-1290 and MAF 3'UTR by a dual-luciferase reporter assay. In addition, we used immunohistochemistry staining to analyze MAF protein distribution and observed loss of MAF nuclear expression in 58% LSCC samples, of which 10% showed complete absence of MAF, compared to nuclear and cytoplasmatic expression in 100% normal mucosa. Using TCGA data, bisulfite pyrosequencing and CNV analysis, we excluded the possibility that loss-of-function mutations, promoter region DNA methylation or CNV are responsible for MAF loss in LSCC. Finally, we identified genes involved in the regulation of apoptosis harboring the MAF binding motif in their promoter region by applied FIMO and DAVID GO analysis. Our results highlight the role of miR-1290 in suppressing MAF expression in LSCC. Furthermore, MAF loss or mislocalization in FFPE LSCC tumor samples might suggest that MAF acts as a LSCC tumor suppressor by regulating apoptosis.</p

    Recurrent epigenetic silencing of the PTPRD tumor suppressor in laryngeal squamous cell carcinoma

    Get PDF
    Cellular processes like differentiation, mitotic cycle, and cell growth are regulated by tyrosine kinases with known oncogenic potential and tyrosine phosphatases that downmodulate the first. Therefore, tyrosine phosphatases are recurrent targets of gene alterations in human carcinomas. We and others suggested recently a tumor suppressor function of the PTPRD tyrosine phosphatase and reported homozygous deletions of the PTPRD locus in laryngeal squamous cell carcinoma. In this study, we investigated other gene-inactivating mechanisms potentially targeting PTPRD, including loss-of-function mutations and also epigenetic alterations like promoter DNA hypermethylation. We sequenced the PTPRD gene in eight laryngeal squamous cell carcinoma cell lines but did not identify any inactivating mutations. In contrast, by bisulfite pyrosequencing of the gene promoter region, we identified significantly higher levels of methylation (p = 0.001 and p = 0.0002, respectively) in 9/14 (64%) laryngeal squamous cell carcinoma cell lines and 37/79 (47%) of primary laryngeal squamous cell carcinoma tumors as compared to normal epithelium of the upper aerodigestive tract. There was also a strong correlation (p = 0.0001) between methylation and transcriptional silencing for the PTPRD gene observed in a cohort of 497 head and neck tumors from The Cancer Genome Atlas dataset suggesting that DNA methylation is the main mechanism of PTPRD silencing in these tumors. In summary, our data provide further evidence of the high incidence of PTPRD inactivation in laryngeal squamous cell carcinoma. We suggest that deletions and loss-of-function mutations are responsible for PTPRD loss only in a fraction of cases, whereas DNA methylation is the dominating mechanism of PTPRD inactivation.</p

    Assessing Various Control Samples for Microarray Gene Expression Profiling of Laryngeal Squamous Cell Carcinoma

    No full text
    Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: “malignancy”, which separated controls from malignant samples and “cell culture-microenvironment” which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples

    Towards effectiveness of cell free DNA based liquid biopsy in head and neck squamous cell carcinoma

    No full text
    Abstract Liquid biopsy is a minimally invasive procedure, that uses body fluids sampling to detect and characterize cancer fingerprints. It is of great potential in oncology, however there are challenges associated with the proper handling of liquid biopsy samples that need to be addressed to implement such analysis in patients’ care. Therefore, in this study we performed optimization of pre-analytical conditions and detailed characterization of cfDNA fraction (concentration, length, integrity score) in surgically treated HNSCC patients (n = 152) and healthy volunteers (n = 56). We observed significantly higher cfDNA concentration in patients compared to healthy controls (p < 0.0001) and a time dependent decrease of cfDNA concentration after tumor resection. Our results also revealed a significant increase of cfDNA concentration with age in both, healthy volunteers (p = 0.04) and HNSCC patients (p = 0.000002). Moreover, considering the multitude of HNSCC locations, we showed the lack of difference in cfDNA concentration depending on the anatomical location. Furthermore, we demonstrated a trend toward higher cfDNA length (range 35–10380 and 500–10380 bp) in the group of patients with recurrence during follow-up. In conclusion, our study provide a broad characterization of cfDNA fractions in HNSCC patients and healthy controls. These findings point to several aspects necessary to consider when implementing liquid biopsy in clinical practice including: (I) time required for epithelial regeneration to avoid falsely elevated levels of cfDNA not resulting from active cancer, (II) age-related accumulation of nucleic acids accompanied by less efficient elimination of cfDNA and (III) higher cfDNA length in patients with recurrence during follow-up, reflecting predominance of tumor necrosis
    corecore