19 research outputs found

    Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat (Triticum aestivum L.)

    Get PDF
    Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status

    Polyol-mediated zinc oxide nanoparticles using the refluxing method as an efficient photocatalytic and antimicrobial agent

    Get PDF
    Nanomaterials have attracted more curiosity recently because of their wide-ranging application in environmental remediation and electronic devices. The current study focuses on zinc oxide nanoparticles’ (ZnO NPs) simple production, characterization, and applications in several fields, including medicinal and photocatalytic degradation of dyes. The non-aqueous-based reflux method is helpful for ZnO NP synthesis; the procedure involves refluxing zinc acetate dihydrate precursor in ethylene glycol for 3 hours in the absence of sodium acetate, in which the refluxing rate and the cooling rate are optimized to get the desired phase, and the unique morphology of polyol-mediated ZnO NPs; it has been achieved using the capping agent TBAB (tetra-butyl ammonium bromide) and precursor zinc acetate dihydrate. UV–Vis, FTIR, XRD, and FESEM structurally characterized polyol-mediated ZnO-NPs. The results show that the material is pure and broadly aggregated into spherical nanoparticles with an average particle size of 18.09 nm. According to XRD analysis, heat annealing made the crystallites more prominent and favored a monocrystalline state. These results and the low cost of making polyol-mediated ZnO NPs demonstrate photocatalytic and antimicrobial properties

    Bee Pollen: Clinical Trials and Patent Applications

    No full text
    Bee pollen is a natural cocktail of floral nectar, flower pollen, enzymes, and salivary secretions produced by honeybees. Bee pollen is one of the bee products most enriched in proteins, polysaccharides, polyphenols, lipids, minerals, and vitamins. It has a significant health and medicinal impact and provides protection against many diseases, including diabetes, cancer, infectious, and cardiovascular. Bee pollen is commonly promoted as a cost-effective functional food. In particular, bee pollen has been applied in clinical trials for allergies and prostate illnesses, with a few investigations on cancer and skin problems. However, it is involved in several patents and health recipes to combat chronic health problems. This review aimed to highlight the clinical trials and patents involving bee pollen for different cases and to present the role of bee pollen as a supplementary food and a potential product in cosmetic applications

    Nanotextured CeO2−SnO2 Composite: Efficient Photocatalytic, Antibacterial, and Energy Storage Fibers

    No full text
    Bacterial infections remain a serious and pervasive threat to human health. Bacterial antibiotic resistance, in particular, lowers treatment efficacy and increases mortality. The development of nanomaterials has made it possible to address issues in the biomedical, energy storage, and environmental fields. This paper reports the successful synthesis of CeO2−SnO2 composite nanofibers via an electrospinning method using polyacrylonitrile polymer. Scanning and transmission electron microscopy assessments showed that the average diameter of CeO2−SnO2 nanofibers was 170 nm. The result of photocatalytic degradation for methylene blue dye displayed enhanced efficiency of the CeO2−SnO2 composite. The addition of SnO2 to CeO2 resulted in the enhancement of the light absorption property and enriched charge transmission of photoinduced electron–hole duos, which conspicuously contributed to momentous photoactivity augmentation. Composite nanofibers exhibited higher specific capacitance which may be accredited to the synergism between CeO2 and SnO2 particles in nanofibers. Furthermore, antibacterial activity was screened against Escherichia coli and CeO2−SnO2 composite nanofibers depicted excellent activity. The findings of this work point to new possibilities as an electrode material in energy storage systems and as a visible-light-active photocatalyst for the purification of chemical and biological contaminants, which would substantially benefit environmental remediation processes

    A novel In2O3-doped ZnO decorated mesoporous carbon nanocomposite as a sensitive and selective dopamine electrochemical sensor

    No full text
    Dopamine (DA), a critical biomolecule involved in neurotransmission, is implicated in a variety of neurological disorders. Therefore, accurate detection of DA is crucial for the swift diagnosis of conditions arising from abnormal DA levels. Consequently, we utilized a novel nanocomposite material comprising In2O3-doped ZnO decorated on mesoporous carbon (In2O3·ZnO@MC) as the active nanomaterial for the fabrication of a glassy carbon electrode (GCE). The structural and morphological properties of In2O3·ZnO@MC were comprehensively analyzed utilizing a variety of characterization techniques to confirm its functionality as the sensing nanomaterial. This innovative sensor demonstrates the ability to detect a wide range of DA concentrations, ranging from 0.5 to 2056 μM, in a neutral phosphate buffer solution, exhibiting a high sensitivity of 0.2153 μAμM−1cm−2 and an acceptable detection limit of 0.024 μM. This sensor enables precise DA level measurements in real samples due to its high sensitivity and selectivity. Moreover, it is a dependable and trustworthy sensor for DA measurement due to its outstanding reproducibility, repeatability, and stability

    Facile synthesis of platinum/polypyrrole-carbon black/SnS2 nanocomposite for efficient photocatalytic removal of gemifloxacin under visible light

    No full text
    Development and designing of effective visible light photocatalysts to overcome the drastrous situation of water pollution requires material with excellent charge transferring skills. In this regard, an efficient ternary nanocomposite photocatalyst comprised of SnS2 nanostructure linked with polypyrrole-doped carbon black (PPC) and platinum nanoparticles (Pt NPs) was successfully fabricated. Effective ternary photocatalyst was synthesized by hydrothermal technique followed by ultra-sonication and photo-reduction methodologies. The XRD measurements confirmed the hexagonal phase of SnS2, and the proper formation of nanocomposite. TEM examination revealed Pt NPs of 5–15 nm in size, dense cocoon like layered structure of PPC along with irregular pellets of SnS2. Acquired diffuse reflectance data confirmed the visible light band gap of synthesized nanomaterials. The Pt@PPC/SnS2 photocatalyst showed excellent destructive potential under visible light with 92.40 % removal of antibiotic gemifloxacin (GFX) in 30 minutes, almost 347 % more efficient than bare SnS2, and was found to be ultrafast for the removal of methylene blue (MB) with total elimination of dye just in 10 minutes. The photoluminescence and photocurrent transient analysis revealed enhanced light absorption capability and increased photo-induced carrier transfer with effective separation behavior, together with increased effective surface area of the ternary photocatalyst as evidenced by the BET surface area measurement

    Au nanoparticles dispersed polypyrrole-carbon black/SrTiO3 nanocomposite photocatalyst with rapid and stable photocatalytic performance

    No full text
    The current chaotic environmental situation especially water pollution prerequisites efficient novel photocatalysts for the proper treatment of these toxic structures through advanced oxidation process. However, the development of active photocatalytic structures requires further committed effort to ensure proper designing and essential band gap. In this report, an attempt has been made to fabricate a rapid and efficient photocatalyst based on SrTiO3 nanostructures, polypyrrole doped carbon black (PPyC) and Au nanoparticles to tackle serious problems of water contamination. Au@PPyC/SrTiO3 ternary photocatalyst was smoothly fabricated by sol gel route followed by ultrasonication and photoreduction technique. X-ray powder diffraction (XRD) studies revealed that SrTiO3 have cubic perovskite structure, while X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of ternary framework among Au, PPyC and SrTiO3 nanostructures. Transmission electron microscopy (TEM) revealed that SrTiO3 possessed irregular porous nanoparticles ranging from 10 to 100 nm, whereas the PPyC appeared as well-ordered chain of beads or interconnected branches of nanoparticles. Modification of bare SrTiO3 to Au@PPyC/SrTiO3 significantly increases the surface area to 2.48 times than that of SrTiO3. The photocatalytic performance of the newly developed Au@PPyC/SrTiO3 photocatalyst has been tested on insecticide imidacloprid and on methylene blue (MB) dye. The current Au@PPyC/SrTiO3 photocatalytic framework exhibited ultrafast skills by removing 96.65% of imidacloprid just in 15 min and found to be ∼3.5 times more effective than bare SrTiO3. Besides this Au@PPyC/SrTiO3 photocatalyst was proven to be extremely destructive for resistant MB dye structure

    Electrochemical detection of hydroquinone as an environmental contaminant using Ga2O3 incorporated ZnO nanomaterial

    No full text
    The primary objective of this research endeavor is to develop a highly sensitive and selective electrochemical sensor for the accurate detection of hydroquinone (HQ), a prevalent environmental contaminant. To achieve this, we employed a novel nanocomposite consisting of Ga2O3-doped ZnO (Ga2O3.ZnO) as the active nanomaterial for fabricating a glassy carbon electrode (GCE). The structure and morphology of the Ga2O3.ZnO nanocomposite were rigorously analyzed using a diverse range of techniques to ensure its suitability as the sensing nanomaterial. This innovative sensor exhibits remarkable capabilities, enabling the detection of HQ across a broad concentration range, spanning from 1 to 11070 µM, in a neutral phosphate buffer solution. It boasts an exceptionally high sensitivity of 1.0229 µA µM−1 cm−2 and an impressive detection limit of 0.063 µM. Thanks to its exceptional sensitivity and specificity, this sensor can precisely quantify HQ levels in real-world samples. Moreover, its outstanding reproducibility, repeatability, and stability establish it as a dependable and resilient choice for HQ determination

    A novel Ga2O3-doped ZnO decorated SWCNT nanocomposite based amperometric sensor for efficient detection of dopamine in real samples

    No full text
    Our current research focuses on developing an efficient electrochemical Dopamine sensor for diagnosing neurological disorders related to abnormal Dopamine levels. We utilized a Ga2O3-doped ZnO decorated SWCNT (Ga2O3·ZnO@SWCNT) nanocomposite to modify a glassy carbon electrode. The structure and morphology of the Ga2O3·ZnO@SWCNT nanocomposite was examined utilizing a variety of approaches to ensure of their appropriateness as the sensing nanomaterial. The sensor effectively detects Dopamine within a wide range (1.0–2056 μM) in neutral phosphate buffer solution, exhibiting high sensitivity (0.2536 μAμM−1cm−2) and a practical detection limit (0.052 μM). It accurately quantifies Dopamine in human blood serum and commercial dopamine injection samples, displaying excellent reproducibility, repeatability, and stability. This proposed Dopamine sensor proves to be a reliable tool for Dopamine determination

    Residues of the Acaricides Abamectin, Hexythiazox, and Spiromesifen in Eggplant (<i>Solanum melongena</i> L.) Fruits Grown under Field Conditions in Najran, Saudi Arabia

    No full text
    The dissipation profiles of the acaricides abamectin, hexythiazox, and spiromesifen in the fruits of eggplant (Solanum melongena L.) grown under field conditions in Najran, Saudi Arabia, were studied. Extraction was performed with acetonitrile, and UPLC-MS/MS was used for quantification. Instead of conventional adsorbents, a 2-fold dilution of the sample extract quickly and efficiently reduced interfering co-extracts and matrix effects. The method was successfully validated according to EU regulations. The limit of quantification was set at 5 µg/kg for hexythiazox and spiromesifen and 20 µg/kg for abamectin. The mean recoveries and relative standard deviations were 88.6–98.7% and 5.2–12.4%, respectively. The method precision was evaluated at the LOQ level for each analyte and ranged from 6.7 to 15.7%, with good trueness (recovery) ranging from 85.7 to 97.2%. The matrix effect ranged from −2.2% to −4.6%, indicating negligible signal suppression. First-order kinetics were used to characterize the dissipation rates of abamectin, hexythiazox, and spiromesifen with half-lives (t1/2) of 2.11–2.42, 2.3–2.73, and 1.31–1.47 days, respectively, using the authorized and double authorized doses. Terminal residues were 0.028–0.331 mg/kg, 0.019–0.592 mg/kg, and 0.044–0.408 mg/kg, respectively, at 3, 7, and 10 days after the second treatment. According to the risk assessment results, the percentage of chronic dietary risk quotient was <100, meaning that abamectin, hexythiazox, and spiromesifen are not considered a risk to human health. The preharvest interval (PHI) should be 7, 7, and 3 days, respectively, if the authorized dose is used, and 10, 10, and 3 days, respectively, if double the authorized dose is used. The current study can be a helpful resource for the responsible and safe use of the tested acaricides on eggplant fruits
    corecore