14 research outputs found

    Chronic Obstructive Pulmonary Disease -lung physiology and genetic links

    No full text

    Flow-Volume Parameters in COPD Related to Extended Measurements of Lung Volume, Diffusion, and Resistance.

    Get PDF
    Classification of COPD into different GOLD stages is based on forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) but has shown to be of limited value. The aim of the study was to relate spirometry values to more advanced measures of lung function in COPD patients compared to healthy smokers. The lung function of 65 COPD patients and 34 healthy smokers was investigated using flow-volume spirometry, body plethysmography, single breath helium dilution with CO-diffusion, and impulse oscillometry. All lung function parameters, measured by body plethysmography, CO-diffusion, and impulse oscillometry, were increasingly affected through increasing GOLD stage but did not correlate with FEV1 within any GOLD stage. In contrast, they correlated fairly well with FVC%p, FEV1/FVC, and inspiratory capacity. Residual volume (RV) measured by body plethysmography increased through GOLD stages, while RV measured by helium dilution decreased. The difference between these RV provided valuable additional information and correlated with most other lung function parameters measured by body plethysmography and CO-diffusion. Airway resistance measured by body plethysmography and impulse oscillometry correlated within COPD stages. Different lung function parameters are of importance in COPD, and a thorough patient characterization is important to understand the disease

    The Efficiency Index (EFFi), based on volumetric capnography, may allow for simple diagnosis and grading of COPD

    No full text
    Background: Spirometry, the main tool for diagnosis and follow-up of COPD, incompletely describes the disease. Based on volumetric capnography (VCap), an index was developed for the diagnosis and grading of COPD, aimed as a complement or alternative to spirometry. Methods: Nine non-smokers, 10 smokers/former smokers without COPD and 54 smokers/ former smokers with COPD were included in the study. Multiple breath washout of N2 and VCap were studied with Exhalyzer D during tidal breathing. VCap was based on signals for flow rate and CO2 and was recorded during one breath preceding N2 washout. Efficiency Index (EFFi) is the quotient between exhaled CO2 volume and the hypothetical CO2 volume exhaled from a completely homogeneous lung over a volume interval equal to 15% of predicted total lung capacity. Results: EFFi increased with increased Global initiative for chronic Obstructive Lung Disease (GOLD) stage and the majority of subjects in GOLD 2 and all subjects in GOLD 3 and 4 could be diagnosed as having COPD using the lower 95% confidence interval of the healthy group. EFFi also correlated with N2 washout (r=-0.73; p,0.001), forced expiratory volume in 1 second (r=0.70; p,0.001) and diffusion capacity for carbon oxide (r=0.69; p,0.001). Conclusion: EFFi measures efficiency of tidal CO2 elimination that is limited by inhomogeneity of peripheral lung function. EFFi allows diagnosis and grading of COPD and, together with FEV1, may explain limitation of physical performance. EFFi offers a simple, effortless and cost-effective complement to spirometry and might serve as an alternative in certain situations

    Grading obstructive lung disease using tomographic pulmonary scintigraphy in patients with chronic obstructive pulmonary disease (COPD) and long-term smokers.

    No full text
    The severity of chronic obstructive lung disease (COPD) is defined by the degree of flow limitation measured as forced expiratory volume in 1 s, which mainly reflects impairment of large and intermediate airways. However, COPD is primarily a small airways disease. Therefore, better diagnostic tools are needed. Ventilation-Perfusion (V/P) SPECT is a sensitive method to detect obstructive lung changes but criteria for staging airway obstruction are missing

    A new approach to assess COPD by identifying lung function break-points.

    No full text
    COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions

    Bronchodilator response of advanced lung function parameters depending on COPD severity

    No full text
    Background: COPD is defined as partly irreversible airflow obstruction. The response pattern of bronchodilators has not been followed in advanced lung function parameters. Purpose: The aim of this study was to investigate bronchodilator response pattern in advanced lung function parameters in a continuous fashion along forced expiratory volume in 1 second (FEV1) percent predicted (%p) in COPD patients and controls. Patients and methods: Eighty-one smokers/ex-smokers (41 controls and 40 COPD) performed spirometry, body plethysmography, impulse oscillometry and single-breath helium dilution carbon monoxide diffusion at baseline, after salbutamol inhalation and then after an additional inhalation of ipratropium. Results: Most pulmonary function parameters showed a linear increase in response to decreased FEV1%p. The subjects were divided into groups of FEV1%p65, and the findings from continuous analysis were verified. The exceptions to this linear response were inspiratory capacity (IC), forced vital capacity (FVC), FEV1/FVC and expiratory resistance (Rex), which showed a segmented response relationship to FEV1%p. IC and FVC, with break points (BP) of 57 and 58 FEV1%p respectively, showed no response above, but an incresed slope below the BP. In addition, in patients with FEV1%p65, response of FEV1%p did not correlate to response of volume parameters. Conclusion: Response of several advanced lung function parameters differs depending on patients’ baseline FEV1%p, and specifically response of volume parameters is most pronounced in COPD patients with FEV1%p<65. Volume and resistance responses do not follow the flow response measured with FEV1 and may thus be used as a complement to FEV1 reversibility to identify flow, volume and resistance responders

    Endoplasmic reticulum, Golgi, and lysosomes are disorganized in lung fibroblasts from chronic obstructive pulmonary disease patients

    No full text
    Chronic Obstructive Pulmonary Disease (COPD) is often caused by smoking and other stressors. This causes oxidative stress, which induces numerous changes on both the transcriptome and proteome of the cell. We aimed to examine if the endomembrane pathway, including the endoplasmic reticulum (ER), Golgi, and lysosomes, was disrupted in fibroblasts from COPD patients as opposed to healthy ever-smokers or never-smokers, and if the response to stress differed. Different cellular compartments involved in the endomembrane pathway, as well as mRNA expression and apoptosis, were examined before and after the addition of stress in lung fibroblasts from never-smokers, eversmokers, and patients with COPD. We found that the ER, Golgi, and lysosomes were disorganized in fibroblasts from COPD patients under baseline conditions. After a time course with ER stress inducing chemicals, changes to the phenotypes of cellular compartments in COPD patient fibroblasts were observed, and the expression of the ER stress-induced gene ERP72 was upregulated more in the COPD patient’s cells compared to ever-smokers or neversmokers. Lastly, a tendency of increased active Caspase-3 was observed in COPD fibroblasts. Our results show that COPD patients have phenotypic changes in the lung fibroblasts endomembrane pathway, and respond differently to stress. Furthermore, these fibroblasts were cultured for several weeks outside the body, but they were not able to regain proper ER structure, indicating that the internal changes to the endomembrane system are permanent in smokers. This vulnerability to cellular stress might be a cause as to why some smokers develop COPD

    Single-nucleotide polymorphisms in the sulfatase-modifying factor 1 gene are associated with lung function and COPD

    No full text
    Single nucleotide polymorphisms (SNPs) in various genes have been shown to associate with COPD, suggesting a role in disease pathogenesis. Sulfatase modifying factor (SUMF1) is a key modifier in connective tissue remodelling, and we have shown previously that several SNPs in SUMF1 are associated with COPD. The aim of this study was to investigate the association between SUMF1 SNPs and advanced lung function characteristics. Never-, former and current smokers with (n=154) or without (n=405) COPD were genotyped for 21 SNPs in SUMF1 and underwent spirometry, body plethysmography, diffusing capacity of the lung for carbon monoxide ( D LCO) measurement and impulse oscillometry. Four SNPs (rs793391, rs12634248, rs2819590 and rs304092) showed a significantly decreased odds ratio of having COPD when heterozygous for the variance allele, together with a lower forced expiratory volume in 1 s (FEV 1) and FEV 1/forced vital capacity (FVC) ratio and an impaired peripheral resistance and reactance. Moreover, individuals homozygous for the variance allele of rs3864051 exhibited a strong association to COPD, a lower FEV 1/FVC, FEV 1 and D LCO, and an impaired peripheral resistance and reactance. Other SNPs (rs4685744, rs2819562, rs2819561 and rs11915920) were instead associated with impaired lung volumes and exhibited a lower FVC, total lung capacity and alveolar volume, in individuals having the variance allele. Several SNPs in the SUMF1 gene are shown to be associated with COPD and impaired lung function. These genetic variants of SUMF1 may cause a deficient sulfation balance in the extracellular matrix of the lung tissue, thereby contributing to the development of COPD

    A new maximal bicycle test using a prediction algorithm developed from four large COPD studies

    No full text
    Background: Maximum exercise workload (WMAX) is today assessed as the first part of Cardiopulmonary Exercise testing. The WMAX test exposes patients with COPD, often having cardiovascular comorbidity, to risks. Our research project was initiated with the final aim to eliminate the WMAX test and replace this test with a predicted value of WMAX, based on a prediction algorithm of WMAX derived from multicentre studies. Methods: Baseline data (WMAX, demography, lung function parameters) from 850 COPD patients from four multicentre studies were collected and standardized. A prediction algorithm was prepared using Random Forest modelling. Predicted values of WMAX were used in a new WMAX test, which used a linear increase in order to reach the predicted WMAX within 8 min. The new WMAX test was compared with the standard stepwise WMAX test in a pilot study including 15 patients with mild/moderate COPD. Results: The best prediction algorithm of WMAX included age, sex, height, weight, and six lung function parameters. FEV1 and DLCO were the most important predictors. The new WMAX test had a better correlation (R2 = 0.84) between predicted and measured WMAX than the standard WMAX test (R2 = 0.66), with slopes of 0.50 and 0.46, respectively. The results from the new WMAX test and the standard WMAX test correlated well. Conclusion: A prediction algorithm based on data from four large multicentre studies was used in a new WMAX test. The prediction algorithm provided reliable values of predicted WMAX. In comparison with the standard WMAX test, the new WMAX test provided similar overall results
    corecore