12 research outputs found

    Eccentric Exercise: Adaptations and Applications for Health and Performance

    Get PDF
    The goals of this narrative review are to provide a brief overview of the muscle and tendon adaptations to eccentric resistance exercise and address the applications of this form of training to aid rehabilitative interventions and enhance sports performance. This work is centered on the author contributions to the Special Issue entitled “Eccentric Exercise: Adaptations and Applications for Health and Performance”. The major themes from the contributing authors include the need to place greater attention on eccentric exercise mode selection based on training goals and individual fitness level, optimal approaches to implementing eccentric resistance exercise for therapeutic purposes, factors that affect the use of eccentric exercise across the lifespan, and general recommendations to integrate eccentric exercise in athletic training regimens. The authors propose that movement velocity and the absorption or recovery of kinetic energy are critical components of eccentric exercise programming. Regarding the therapeutic use of eccentric resistance training, patient-level factors regarding condition severity, fitness level, and stage of rehabilitation should govern the plan of care. In athletic populations, use of eccentric exercise may improve movement competency and promote improved safety and performance of sport-specific tasks. Eccentric resistance training is a viable option for youth, young adults, and older adults when the exercise prescription appropriately addresses program goals, exercise tolerability, and compliance. Despite the benefits of eccentric exercise, several key questions remain unanswered regarding its application underscoring the need for further investigation

    Endothelial dysfunction in autoimmune, pulmonary, and kidney systems, and exercise tolerance following SARS-CoV-2 infection

    Get PDF
    Long COVID is characterized by persistent symptoms beyond 3-months of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection that last for at least 2 months and cannot be explained by an alternative diagnosis. Autonomic, immunologic, endothelial, and hypercoagulation are implicated as possible mechanisms of long COVID symptoms. Despite recognition of the public health challenges posed by long COVID, the current understanding of the pathophysiological underpinnings is still evolving. In this narrative review, we explore the long-term effects of SARS-CoV-2 infection on T cell activation such as autoimmune disorders and endothelial cell dysfunction involving vascular impairments within pulmonary and renal architecture. We have described how endothelial dysfunction and vascular abnormalities may underscore findings of exercise intolerance by way of impaired peripheral oxygen extraction in individuals with long COVID

    Rate of Force Development Is Related to Maximal Force and Sit-to-Stand Performance in Men With Stages 3b and 4 Chronic Kidney Disease

    Get PDF
    Introduction: The primary aims of the present study were to assess the relationships of early (0–50 ms) and late (100–200 ms) knee extensor rate of force development (RFD) with maximal voluntary force (MVF) and sit-to-stand (STS) performance in participants with chronic kidney disease (CKD) not requiring dialysis.Methods: Thirteen men with CKD (eGFR = 35.17 ±.5 ml/min per 1.73 m2, age = 70.56 ±.4 years) and 12 non-CKD men (REF) (eGFR = 80.31 ± 4.8 ml/min per 1.73 m2, age = 70.22 ±.9 years) performed maximal voluntary isometric contractions to determine MVF and RFD of the knee extensors. RFD was measured at time intervals 0–50 ms (RFD0−50) and 100–200 ms (RFD100−200). STS was measured as the time to complete five repetitions. Measures of rectus femoris grayscale (RF GSL) and muscle thickness (RF MT) were obtained via ultrasonography in the CKD group only. Standardized mean differences (SMD) were used to examine differences between groups. Bivariate relationships were assessed by Pearson's product moment correlation.Results: Knee extensor MVF adjusted for body weight (CKD=17.14 ±.1 N·kg0.67, REF=21.55 ±.3 N·kg0.67, SMD = 0.79) and STS time (CKD = 15.93 ±.4 s, REF = 12.23 ±.7 s, SMD = 1.03) were lower in the CKD group than the REF group. Absolute RFD100−200 was significantly directly related to adjusted MVF in CKD (r = 0.56, p = 0.049) and REF (r = 0.70, p = 0.012), respectively. STS time was significantly inversely related to absolute (r = −0.75, p = 0.008) and relative RFD0−50 (r = −0.65, p = 0.030) in CKD but not REF (r = 0.08, p = 0.797; r = 0.004, p = 0.991). Significant inverse relationships between RF GSL adjusted for adipose tissue thickness and absolute RFD100−200 (r =−0.59, p = 0.042) in CKD were observed.Conclusion: The results of the current study highlight the declines in strength and physical function that occur in older men with CKD stages 3b and 4 not requiring dialysis. Moreover, early RFD was associated with STS time in CKD while late RFD was associated MVF in both CKD and REF.Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT03160326 and NCT02277236

    Leptin, Leptin Soluble Receptor, and the Free Leptin Index following a Diet and Physical Activity Lifestyle Intervention in Obese Males and Females

    Get PDF
    Leptin (LEP) is associated with appetite regulation and metabolism. Concentration is linear with adiposity, suggesting LEP resistance. LEP circulates freely and bound with its soluble receptor (sOB-r); the ratio is the free leptin index (FLI), an index of leptin resistance; lower FLI suggests reduced biological action. Purpose. The aim was to determine the effect of changes in adipose tissue distribution on LEP, sOB-r, and FLI following 6 months (6 M) of a diet/exercise weight loss program (WLP). In addition, we aim to identify predictors of the FLI. Methods. 6 M WLP consisted of diet/lifestyle interventions following ADA guidelines. Body composition was assessed by DXA. LEP and sOB-r analysis were done via ELISA. Results. 10 adults completed the WLP. Significant reductions were seen in total fat percentage (% fat), nontrunk fat, (NTF), and trunk fat (TF) from base to 3 m and 6 M (p≤0.05). The FLI were reduced at 3 M and 6 M for males and 6 M for females. Total body fat and body weight predicted the FLI in both sexes. Conclusions. LEP and FLI reductions following 6 M of WLP were achieved independent of sOB-r changes. We also demonstrate that the FLI can be predicted noninvasively through total fat mass and body weight in kilograms

    Fatigability during volitional walking in incomplete spinal cord injury: cardiorespiratory and motor performance considerations.

    No full text
    Fatigability describes the decline in force production (i.e., performance fatigability) and/or changes in sensations regulating performance (i.e., perceived fatigability) during whole-body activity and poses a major challenge to those living with spinal cord injuries (SCI). After SCI, the inability to overcome disruptions to metabolic homeostasis due to cardiorespiratory limitations and physical deconditioning may contribute to increased fatigability severity. The increased susceptibility to fatigability may have implications for motor control strategies and motor learning. Locomotor training approaches designed to reduce fatigability and enhance aerobic capacity in combination with motor learning may be advantageous for promoting functional recovery after SCI. Future research is required to advance the understanding of the relationship between fatigability, cardiorespiratory function and motor performance following SCI

    Circulating Endothelial Progenitor and Mesenchymal Stromal Cells as Biomarkers for Monitoring Disease Status and Responses to Exercise

    No full text
    Noncommunicable chronic diseases, such as obesity, cardiovascular disease (CVD), and type 2 diabetes (T2D), pose significant health challenges globally. Important advances have been made in the understanding of the pathophysiologal mechanisms and treatment of noncommunicable diseases in recent years. Lack of physical activity is a primary contributor to many noncommunicable diseases including metabolic syndrome, T2D, CVD, and obesity. Certain diabetes medications and non-pharmaceutical interventions, such as physical activity and exercise, are shown to be effective in decreasing the CVD risks associated with heart disease, stroke, obesity, prediabetes, and T2D. The ability to measure and analyze circulating adult stem cells (ASCs) has gained particular interest due to their potential to identify at-risk individuals and implications in various therapeutics. Therefore, the purpose of this narrative review is to (1) provide an overview of ASCs; specifically endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs), (2) describe the responses of these cells to acute and chronic exercise, and (3) highlight the potential effect of exercise on EPCs and MSCs in aging and disease. EPCs are circulating cells, abundantly available in peripheral blood, bone marrow, and umbilical cord, and are defined by cell surface markers such as CD34+. EPCs are expected to play an important role in angiogenesis and neovascularization and have been implicated in the treatment of CVD. MSCs are essential for maintaining tissue and organ homeostasis. MSCs are defined as multipotent heterogeneous cells that can proliferate in vitro as plastic-adherent cells, have fibroblast-like morphology, form colonies in vitro, and can differentiate into ostyeoblasts, adipocytes, chondroblasts, and myoblasts. In the presence of aging and disease, EPCs and MSCs decrease in quantity and functional capacity. Importantly, exercise facilitates EPC differentiation and production from bone marrow and also helps to promote migration and homing to the hypoxic and damaged tissue which in turn improve angiogenesis and vasculogenesis. Similarly, exercise stimulates increases in proliferation and migratory activity of MSCs. Despite the reported benefits of exercise on EPC and MSC number and function, little is known regarding the optimal exercise prescription for aging and clinical populations. Moreover, the interactions between medications and exercise on EPCs and MSCs is currently unclear. Use of ASCs as a biomarker have the potential to revolutionize the management of patients with a variety of metabolic and obesity related disorders and also pro-inflammatory diseases. Further investigation of clinical entities are urgently needed to understand the implications of interventions such as exercise, diet, and various medications on EPC and MSC quantity and function in aging and clinical populations

    Chronic kidney disease: considerations for monitoring skeletal muscle health and prescribing resistance exercise

    No full text
    Skeletal muscle wasting has gained interest as a primary consequence of chronic kidney disease (CKD) due to the relationship between skeletal muscle mass, mortality and major adverse cardiovascular events in this population. The combination of reductions in physical function, skeletal muscle performance and skeletal muscle mass places individuals with CKD at greater risk of sarcopenia. Therefore the monitoring of skeletal muscle composition and function may provide clinical insight into disease progression. Dual-energy X-ray absorptiometry and bioelectrical impedance analysis are frequently used to estimate body composition in people with CKD within clinical research environments, however, their translation into clinical practice has been limited. Proxy measures of skeletal muscle quality can be obtained using diagnostic ultrasound, providing a cost-effective and accessible imaging modality to aid further clinical research regarding changes in muscle composition. Clinicians and practitioners should evaluate the strengths and limitations of the available technology to determine which devices are most appropriate given their respective circumstances. Progressive resistance exercise has been shown to improve skeletal muscle hypertrophy of the lower extremities, muscular strength and health-related quality of life in end-stage renal disease, with limited evidence available in CKD predialysis. Fundamental principles (i.e. specificity, overload, variation, reversibility, individuality) can be used in the development of more advanced programs focused on improving specific neuromuscular and functional outcomes. Future research is needed to determine the applicability of skeletal muscle monitoring in clinical settings and the feasibility and efficacy of more advanced resistance exercise approaches in those with CKD predialysis

    Chronic kidney disease: Considerations for monitoring skeletal muscle health and prescribing resistance exercise

    No full text
    © The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. Skeletal muscle wasting has gained interest as a primary consequence of chronic kidney disease (CKD) due to the relationship between skeletal muscle mass, mortality and major adverse cardiovascular events in this population. The combination of reductions in physical function, skeletal muscle performance and skeletal muscle mass places individuals with CKD at greater risk of sarcopenia. Therefore the monitoring of skeletal muscle composition and function may provide clinical insight into disease progression. Dual-energy X-ray absorptiometry and bioelectrical impedance analysis are frequently used to estimate body composition in people with CKD within clinical research environments, however, their translation into clinical practice has been limited. Proxy measures of skeletal muscle quality can be obtained using diagnostic ultrasound, providing a cost-effective and accessible imaging modality to aid further clinical research regarding changes in muscle composition. Clinicians and practitioners should evaluate the strengths and limitations of the available technology to determine which devices are most appropriate given their respective circumstances. Progressive resistance exercise has been shown to improve skeletal muscle hypertrophy of the lower extremities, muscular strength and health-related quality of life in end-stage renal disease, with limited evidence available in CKD predialysis. Fundamental principles (i.e. specificity, overload, variation, reversibility, individuality) can be used in the development of more advanced programs focused on improving specific neuromuscular and functional outcomes. Future research is needed to determine the applicability of skeletal muscle monitoring in clinical settings and the feasibility and efficacy of more advanced resistance exercise approaches in those with CKD predialysis

    Walking endurance, muscle oxygen extraction, and perceived fatigability after overground locomotor training in incomplete spinal cord injury: A pilot study

    No full text
    The purpose of this study was to examine the effects of overground locomotor training (OLT) on walking endurance and gastrocnemius oxygen extraction in people with chronic cervical motor-incomplete spinal cord injury (SCI). Prospective single-arm pre-post pilot study. Human Performance Research Laboratory. Adult men with traumatic chronic cervical SCI ( = 6; age = 30.8 ± 12.5). Twenty-four sessions of structured OLT. Walking endurance was determined during a constant work-rate time-to-exhaustion treadmill test. Normalized perceived fatigability was calculated by dividing subjective ratings of tiredness by walking time. Cardiorespiratory outcomes and muscle oxygen extraction were analyzed using breath-by-breath gas-exchange and near-infrared spectroscopy. OLT resulted in large effects on walking endurance (1232 ± 446 s vs 1645 ± 255 s;  = 1.1;  = 0.045) and normalized perceived fatigability (5.3 ± 1.5 a.u. vs 3.6 ± 0.9 a.u.;  = 1.3;  = 0.033). Small-to-medium effects on absolute (2.8 ± 2.5 a.u. vs 4.2 ± 3.5 a.u.;  = 0.42;  = 0.035) and isotime (2.8 ± 2.5 a.u. vs 3.8 ± 3.0 a.u.;  = 0.33;  = 0.023) muscle oxygen extraction were also observed after OLT. These findings provide preliminary data supporting the potential for improved walking endurance, enhanced muscle O extraction, and reduced perceived fatigability in people with chronic cervical motor-incomplete SCI following the OLT program described in this study
    corecore