117 research outputs found

    The structure of deuterated benzene films adsorbed on the graphite (0001) basal plane: what happens below and above the monolayer coverage?

    Get PDF
    An exact description of the interactions in aromatic carbon systems is a key condition for the design of carbon based nanomaterials. In this paper we investigate the binding and adsorbate structure of the simplest prototype system in this class – the single aromatic ring molecule benzene on graphite. We have collected neutron diffraction data of the ordered phase of deuterated benzene, C6D6, adsorbed on the graphite (0001) basal plane surface. We examined relative coverages from 0.15 up to 1.3 monolayers (ML) in a temperature range of 80 to 250 K. The results confirm the flat lying commensurate (√7 x √7) R19.1° monolayer with lattice constants a = b = 6.5 Å at coverages of less than 1 ML. For this structure we observe a progressive melting well below the desorption temperature. At higher coverages we do neither observe an ordered second layer nor a densification of the structure by upright tilting of first layer molecules, as generally assumed up to now. Instead, we see the formation of clusters with a bulk crystalline structure for coverages only weakly exceeding 1 ML

    Composite nature of fresh skin revealed during compression

    Get PDF
    Biological systems are subjected to moderate-to-high strain rates in blast-type traumatic injuries. An improved understanding of the responses of cells and tissues to extreme mechanical stresses could improve mitigation and post-injury treatment strategies. A key aim of this research is to create biologically meaningful injury models of soft tissues. Here the authors examine the material and cellular properties of freshly harvested porcine skin in compression. The data presented suggest that fresh skin differentially responds low to moderate strain rates as a composite rather than that of a homogeneous polymer. The implications of this work are discussed in terms of creating improved analytical models to describe the material properties of fresh skin. The Centre for Blast Injury Studies acknowledges The Royal British Legion for its support, as well as Imperial College London. The Institute of Shock Physics acknowledges the support of the Atomic Weapon Establishment, Aldermaston, UK and Imperial College London.This is the accepted manuscript. The final version is available at http://www.icevirtuallibrary.com/content/article/10.1680/bbn.14.00028

    Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies

    Get PDF
    Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti–CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions

    Even More Rapidly Rotating Pre-main-sequence M Dwarfs with Highly Structured Light Curves: An Initial Survey in the Lower Centaurus-Crux and Upper Centaurus-Lupus Associations

    Get PDF
    Using K2, we recently discovered a new type of periodic photometric variability while analyzing the light curves of members of Upper Sco. The 23 exemplars of this new variability type are all mid-M dwarfs, with short rotation periods. Their phased light curves have one or more broad flux dips or multiple arcuate structures which are not explicable by photospheric spots or eclipses by solid bodies. Now, using Transiting Exoplanet Survey Satellite data, we have searched for this type of variability in the other major sections of Sco-Cen, Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC). We identify 28 stars with the same light curve morphologies. We find no obvious difference between the Upper Sco and the UCL/LCC representatives of this class in terms of their light curve morphologies, periods, or variability amplitudes. The physical mechanism behind this variability is unknown, but as a possible clue we show that the rapidly rotating mid-M dwarfs in UCL/LCC have slightly different colors from the slowly rotating M dwarfs—they either have a blue excess (hot spots?) or a red excess (warm dust?). One of the newly identified stars (TIC242407571) has a very striking light curve morphology. At about every 0.05 in phase are features that resemble icicles. The icicles arise because there is a second periodic system whose main feature is a broad flux dip. Using a toy model, we show that the observed light curve morphology results only if the ratio of the two periods and the flux-dip width are carefully arranged

    Even More Rapidly Rotating Pre-main-sequence M Dwarfs with Highly Structured Light Curves: An Initial Survey in the Lower Centaurus-Crux and Upper Centaurus-Lupus Associations

    Get PDF
    Using K2, we recently discovered a new type of periodic photometric variability while analyzing the light curves of members of Upper Sco. The 23 exemplars of this new variability type are all mid-M dwarfs, with short rotation periods. Their phased light curves have one or more broad flux dips or multiple arcuate structures which are not explicable by photospheric spots or eclipses by solid bodies. Now, using Transiting Exoplanet Survey Satellite data, we have searched for this type of variability in the other major sections of Sco-Cen, Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC). We identify 28 stars with the same light curve morphologies. We find no obvious difference between the Upper Sco and the UCL/LCC representatives of this class in terms of their light curve morphologies, periods, or variability amplitudes. The physical mechanism behind this variability is unknown, but as a possible clue we show that the rapidly rotating mid-M dwarfs in UCL/LCC have slightly different colors from the slowly rotating M dwarfs—they either have a blue excess (hot spots?) or a red excess (warm dust?). One of the newly identified stars (TIC242407571) has a very striking light curve morphology. At about every 0.05 in phase are features that resemble icicles. The icicles arise because there is a second periodic system whose main feature is a broad flux dip. Using a toy model, we show that the observed light curve morphology results only if the ratio of the two periods and the flux-dip width are carefully arranged

    Author Correction: Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene.

    Get PDF
    The interfacial behaviour of water remains a central question to fields as diverse as protein folding, friction and ice formation[1,2]. While the structural and dynamical properties of water at interfaces differ strongly from those in the bulk, major gaps in our knowledge at the molecular level still prevent us from understanding these ubiquitous chemical processes. Information concerning the microscopic motion of water comes mostly from computational simulation[3,4] but the dynamics of molecules, on the atomic scale, is largely unexplored by experiment. Here we present experimental results combined with ab initio calculations to provide a detailed insight into the behaviour of water monomers on a graphene surface. We show that motion occurs by activated hopping on the graphene lattice. The dynamics of water diffusion displays remarkably strong signatures of cooperative behaviour due to repulsive forces between the monomers. The repulsive forces enhance the monomer lifetime (tm≈3t_m \approx 3 s at TS=125T_S = 125 K) in a free-gas\textit{free-gas} phase that precedes the nucleation of ice islands and, in turn, provides the opportunity for our experiments to be performed. Our results give a unique molecular perspective of barriers to ice nucleation on material surfaces, providing new routes to understand and potentially control the more general process of ice formation

    Coupling between diffusion and orientation of pentacene molecules on an organic surface.

    Get PDF
    The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.The authors acknowledge financial support from the EPSRC (EP/E0049621, B.A.J.L., D.J.W., D.M.C., A.P.J., J.E., W.A.), the Austrian Academy of Sciences (B.A.J.L.), the Royal Society (A.P.J.), the E.U. ERASMUS programme (A.M.) and the Deutsche Forschungsgemeinschaft (GRK 1782, P.R.). Underlying data are available at the University of Cambridge Research data repository (https://www.repository.cam.ac.uk).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmat457

    Polarisation in spin-echo experiments: Multi-point and lock-in measurements.

    Get PDF
    Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation
    • …
    corecore