3,347 research outputs found

    An effective quantum mechanism for mass generation in diffeomorphism-invariant theories

    Get PDF
    We propose a scenario for particle-mass generation, assuming the existence of a physical regime where, firstly, physical particles can be considered as point-like objects moving in a background space-time and, secondly, their mere presence spoils the invariance under the local diffeomorphism group, resulting in an anomalous realization of the latter. Under these hypotheses, we describe mass generation starting from the massless free theory. The mechanism is not sensitive to the detailed description of the underlying theory at higher energies, leaning only on general structural features of it, specifically diffeomorphism invariance.Comment: 8 pages, LaTeX, no figures; version accepted for publication in MPL

    Extended diffeomorphism algebras in (quantum) gravitational physics

    Full text link
    We construct an explicit representation of the algebra of local diffeomorphisms of a manifold with realistic dimensions. This is achieved in the setting of a general approach to the (quantum) dynamics of a physical system which is characterized by the fundamental role assigned to a basic underlying symmetry. The developed mathematical formalism makes contact with the relevant gravitational notions by means of the addition of some extra structure. The specific manners in which this is accomplished, together with their corresponding physical interpretation, lead to different gravitational models. Distinct strategies are in fact briefly outlined, showing the versatility of the present conceptual framework.Comment: 20 pages, LATEX, no figure

    New insights in particle dynamics from group cohomology

    Full text link
    The dynamics of a particle moving in background electromagnetic and gravitational fields is revisited from a Lie group cohomological perspective. Physical constants characterising the particle appear as central extension parameters of a group which is obtained from a centrally extended kinematical group (Poincare or Galilei) by making local some subgroup. The corresponding dynamics is generated by a vector field inside the kernel of a presymplectic form which is derived from the canonical left-invariant one-form on the extended group. A non-relativistic limit is derived from the geodesic motion via an Inonu-Wigner contraction. A deeper analysis of the cohomological structure reveals the possibility of a new force associated with a non-trivial mixing of gravity and electromagnetism leading to in principle testable predictions.Comment: 8 pages, LaTeX, no figures. To appear in J. Phys. A (Letter to the editor

    Space-time dynamics from algebra representations

    Get PDF
    We present a model for introducing dynamics into a space-time geometry. This space-time structure is constructed from a C*-algebra defined in terms of the generators of an irreducible unitary representation of a finite-dimensional Lie algebra G. This algebra is included as a subalgebra in a bigger algebra F, the generators of which mix the representations of G in a way that relates different space-times and creates the dynamics. This construction can be considered eventually as a model for 2-D quantum gravity.Comment: 6 pages, LaTeX, no figures. Old paper submitted for archive reason

    Revisited gauge principle: towards a unification of space-time and internal gauge interactions

    Full text link
    The minimal coupling principle is revisited under the quantum perspectives of the space-time symmetry. This revision is better realized on a Group Approach to Quantization (GAQ) where group cohomology and extensions of groups play a preponderant role. We firstly consider the case of the electromagnetic potential; the Galilei and/or Poincare group is (non-centrally) extended by the "local" U(1) group. This group can also be seen as a central extension, parametrized by both the mass and the electric charge, of an infinite-dimensional group, on which GAQ leads to the dynamics of a particle moving in the presence of an electromagnetic field. Then we try the gravitational interaction of a particle by turning into "local" the space-time translations. However, promoting to "local" the space-time subgroup of the true symmetry of the quantum free relativistic particle, i.e. the centrally extended by U(1) Poincare group, results in a new electromagnetic-like force of pure gravitational origin. This is a consequence of the space-time translations not being an invariant subgroup of the extended Poincare group and constitutes a preliminary attempt to a non-trivial mixing of space-time and internal gauge interactions.Comment: 22 pages, LATEX, no figure

    Area-charge inequality for black holes

    Full text link
    The inequality between area and charge A≥4πQ2A\geq 4\pi Q^2 for dynamical black holes is proved. No symmetry assumption is made and charged matter fields are included. Extensions of this inequality are also proved for regions in the spacetime which are not necessarily black hole boundaries.Comment: 21 pages, 2 figure

    Space-time Structures from Critical Values in 2D Quantum Gravity

    Get PDF
    A model for 2D Quantum Gravity is constructed out of the Virasoro group. To this end the quantization of the abstract Virasoro group is revisited. For the critical values of the conformal anomaly c, some quantum operators (SL(2,R) generators) lose their dynamical content (they are no longer conjugated operators). The notion of space-time itself in 2D gravity then arises as associated with this kinematical SL(2,R) symmetry. An ensemble of different copies of AdS do co-exist in this model with different weights, depending on their curvature (which is proportional to \hbar^{2}) and they are connected by gravity operators. This model suggests that, in general, quantum diffemorphisms should not be imposed as constraints to the theory, except for the classical limit.Comment: 22 pages, latex, no figures. Revised version with an effort in the development of the underlying classical theory and the clarification of the classical limit. To appear in Class. Quant. Gra

    MOCVD Growth of ZnO Nanowires Through Colloidal and Sputtered Au Seed Via Zn[TMHD]2 Precursor

    Get PDF
    AbstractZinc oxide (ZnO) nanowire (NW) arrays were grown on Si (100) substrate by metal-organic chemical vapor deposition (MOCVD) via Zn[TMHD]2 as precursor. Here we adopted two different procedures to grow ZnO NWs namely, colloid and sputtered Au pre-deposition on Si (100) substrate. Comparative studies based on the morphology and growth behavior of ZnO NWs were performed. The grown ZnO NWs were characterized by field-emission scanning electron microscopy (FE-SEM), Atomic Force Microscopy (AFM), Co-focal laser scanning microscopy (CLSM), and Raman spectroscopy

    Structure Constants for New Infinite-Dimensional Lie Algebras of U(N+,N-) Tensor Operators and Applications

    Get PDF
    The structure constants for Moyal brackets of an infinite basis of functions on the algebraic manifolds M of pseudo-unitary groups U(N_+,N_-) are provided. They generalize the Virasoro and W_\infty algebras to higher dimensions. The connection with volume-preserving diffeomorphisms on M, higher generalized-spin and tensor operator algebras of U(N_+,N_-) is discussed. These centrally-extended, infinite-dimensional Lie-algebras provide also the arena for non-linear integrable field theories in higher dimensions, residual gauge symmetries of higher-extended objects in the light-cone gauge and C^*-algebras for tractable non-commutative versions of symmetric curved spaces.Comment: 8 pages, LaTeX, no figures; minor comments added; to appear in J. Phys A (Math. Gen.
    • …
    corecore