67 research outputs found

    Antibacterial, Anti-HIV-1 Protease and Cytotoxic Activities of Aqueous Ethanolic Extracts from Combretum Adenogonium Steud. Ex A. Rich (Combretaceae).

    Get PDF
    \ud \ud Records have shown that Combretum adenogonium Steud. Ex A. Rich (Combretaceae) is used in traditional medicine systems of several tribes in Tanzania. This study focused on the investigation of antibacterial activity, anti-HIV-1 protease activity, toxicity properties and classes of phytochemicals in extracts from C. adenogonium Steud. Ex A. Rich (Combretaceae) to evaluate potential of these extracts for development as herbal remedies. Dried plant material were ground to fine powder and extracted using 80% aqueous ethanol to afford root, leaf and stem bark extracts. The extracts were assayed for anti-HIV-1 protease activities, antibacterial activities using microdilution methods and cytotoxicity using brine shrimps lethality assay. Screening for major phytochemical classes was carried out using standard chemical tests. All extracts exhibited antibacterial activity to at least one of the test bacteria with MIC-values ranging from 0.31-5.0 mg/ml. Two extracts, namely, root and stem bark exhibited anti-HIV-1 PR activity with IC50 values of 24.7 and 26.5 μg/ml, respectively. Stem bark and leaf extracts showed mild toxicity with LC50 values of 65.768 μg/ml and 76.965 μg/ml, respectively, whereas roots were relatively non-toxic (LC50 = 110.042 μg/ml). Phytochemical screening of the extracts indicated presence of flavonoids, terpenoids, alkaloids, tannins, glycosides and saponins. These results provide promising baseline information for the potential development of C. adenogonium extracts in treatment of bacterial and HIV/AIDS-related opportunistic infections

    Single nucleotide polymorphisms of the APC gene and colorectal cancer risk: a case-control study in Taiwan

    Get PDF
    BACKGROUND: Colorectal cancer (CRC), which has become especially prevalent in developed countries, is currently the third highest cause of cancer mortality in Taiwan. Mutation of the adenomatous polyposis coli (APC) gene, a tumour suppressor, is thought to be an early event in colorectal tumourigenesis. To date, however, no large-scale screening for APC gene variants in Chinese subjects has been performed. The present study was undertaken to identify APC gene variants that are significantly associated with the occurrence of CRC in Taiwanese subjects. METHODS: In order to compare the genotype distribution of variant sites, the full-length APC genes of 74 healthy individuals and 80 CRC patients were sequenced. RESULTS: Among the 154 Taiwanese subjects examined in this study, three new mutations, but no previously reported mutations, were found. One deletion at codon 460 leading to a frameshift and two missense mutations resulting in p.V1125A and p.S1126R substitutions were identified. Additionally, three high risk genotypes associated with three single nucleotide polymorphisms and one low risk genotype at codon 1822 were identified. CONCLUSION: The findings of this case-control study are consistent with the proposal that Taiwanese subjects differ from other subjects with respect to phenotypic presentation of APC and CRC risk

    Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia

    Get PDF
    An ethnomedicinal study was conducted to document the indigenous medicinal plant knowledge and use by traditional healers in southwestern Ethiopia from December 2005 to November 2006. Data were collected from 45 randomly selected traditional healers using semi-structured interviews and observations. Sixty-seven ethnomedicinal plant species used by traditional healers to manage 51 different human ailments were identified and documented. Healers' indigenous knowledge was positively correlated with their reported age but not with their educational level. High degree of consensus was observed among traditional healers in treating tumor (locally known as Tanacha), rabies (Dhukuba Seree) and insect bite (Hadhaa). The use of more than one species was significantly cited for remedy preparations. The reported abundance of the ethnomedicinal plant species varied significantly with respect to the presence of multiple uses of the reported species. Our results showed that ethnomedicinal plant species used by healers are under serious threat due to several factors, which indicates the need for urgent attention towards their conservation and sustainable utilization

    Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach

    Get PDF
    Proteomics approach was used to elucidate the molecular interactions taking place at the stem cell wall level when tomato species were inoculated with Ralstonia solanacearum, a causative agent of bacterial wilt. Cell wall proteins from both resistant and susceptible plants before and after the bacterial inoculation were extracted from purified cell wall with salt buffers and separated with 2-D IEF/SDS–PAGE and with 3-D IEF/SDS/SDS–PAGE for basic proteins. The gels stained with colloidal Coomassie revealed varied abundance of protein spots between two species (eight proteins in higher abundance in resistant and six other in susceptible). Moreover, proteins were regulated differentially in response to bacterial inoculation in resistant (seven proteins increased and eight other decreased) as well as in susceptible plants (five proteins elevated and eight other suppressed). Combination of MALDI-TOF/TOF MS and LC-ESI-IonTrap MS/MS lead to the identification of those proteins. Plants responded to pathogen inoculation by elevating the expression of pathogenesis related, other defense related and glycolytic proteins in both species. However, cell wall metabolic proteins in susceptible, and antioxidant, stress related as well as energy metabolism proteins in resistant lines were suppressed. Most of the proteins of the comparative analysis and other randomly picked spots were predicted to have secretion signals except some classical cytosolic proteins

    Expansion and functional diversification of a leucyl aminopeptidase family that encodes the major protein constituents of Drosophila sperm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the <it>Drosophila </it>sperm proteome (termed, Sperm-LeucylAminoPeptidases, S-LAPs 1-8) led us to hypothesize that this gene family may have experienced such a diversification during insect evolution.</p> <p>Results</p> <p>To assess putative functional activities of S-LAPs, we (i) demonstrated that all S-LAPs are specifically expressed in the testis, (ii) confirmed their presence in sperm by two-dimensional gel electrophoresis and mass spectrometry, (iii) determined that they represent a major portion of the total protein in sperm and (iv) identified aminopeptidase enzymatic activity in sperm extracts using LAP-specific substrates. Functionally significant divergence at the canonical M17 active site indicates that the largest phylogenetic group of S-LAPs lost catalytic activity and likely acquired novel, as yet undetermined, functions in sperm prior to the expansion of the gene family.</p> <p>Conclusions</p> <p>Comparative genomic and phylogenetic analyses revealed the dramatic expansion of the S-LAP gene family during <it>Drosophila </it>evolution and copy number heterogeneity in the genomes of related insects. This finding, in conjunction with the loss of catalytic activity and potential neofunctionalization amongst some family members, extends empirical support for pervasive "revolving door" turnover in the evolution of reproductive gene family composition and function.</p

    Zebrafish as a model for kidney function and disease

    Get PDF
    Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease

    Biochemical evidence for the tyrosine involvement in cationic intermediate stabilization in mouse β-carotene 15, 15'-monooxygenase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-carotene 15,15'-monooxygenase (BCMO1) catalyzes the crucial first step in vitamin A biosynthesis in animals. We wished to explore the possibility that a carbocation intermediate is formed during the cleavage reaction of BCMO1, as is seen for many isoprenoid biosynthesis enzymes, and to determine which residues in the substrate binding cleft are necessary for catalytic and substrate binding activity. To test this hypothesis, we replaced substrate cleft aromatic and acidic residues by site-directed mutagenesis. Enzymatic activity was measured <it>in vitro </it>using His-tag purified proteins and <it>in vivo </it>in a β-carotene-accumulating <it>E. coli </it>system.</p> <p>Results</p> <p>Our assays show that mutation of either Y235 or Y326 to leucine (no cation-π stabilization) significantly impairs the catalytic activity of the enzyme. Moreover, mutation of Y326 to glutamine (predicted to destabilize a putative carbocation) almost eliminates activity (9.3% of wt activity). However, replacement of these same tyrosines with phenylalanine or tryptophan does not significantly impair activity, indicating that aromaticity at these residues is crucial. Mutations of two other aromatic residues in the binding cleft of BCMO1, F51 and W454, to either another aromatic residue or to leucine do not influence the catalytic activity of the enzyme. Our <it>ab initio </it>model of BCMO1 with β-carotene mounted supports a mechanism involving cation-π stabilization by Y235 and Y326.</p> <p>Conclusions</p> <p>Our data are consistent with the formation of a substrate carbocation intermediate and cation-π stabilization of this intermediate by two aromatic residues in the substrate-binding cleft of BCMO1.</p

    Tyrosine 387 and arginine 404 are critical in the hydrolytic mechanism of Escherichia coli aminopeptidase P.

    No full text
    [[sponsorship]]生物化學研究所[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=0006-2960&DestApp=JCR&RQ=IF_CAT_BOXPLOT[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=00023563140000
    corecore