204 research outputs found
A New Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and Cladistic Analysis of Early Chondrichthyans
BACKGROUND: The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters. METHODOLOGY/PRINCIPAL FINDINGS: On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters. CONCLUSIONS/SIGNIFICANCE: Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters
Neurocranial development of the coelacanth and the evolution of the sarcopterygian head
The neurocranium of sarcopterygian fishes was originally divided into an anterior (ethmosphenoid) and posterior (otoccipital) portion by an intracranial joint, and underwent major changes in its overall geometry before fusing into a single unit in lungfishes and early tetrapods. Although the pattern of these changes is well-documented, the developmental mechanisms that underpin variation in the form of the neurocranium and its associated soft tissues during the evolution of sarcopterygian fishes remain poorly understood. The coelacanth Latimeria is the only known living vertebrate that retains an intracranial joint. Despite its importance for understanding neurocranial evolution, the development of the neurocranium of this ovoviviparous fish remains unknown. Here we investigate the ontogeny of the neurocranium and brain in Latimeria chalumnae using conventional and synchrotron X-ray microcomputed tomography as well as magnetic resonance imaging, performed on an extensive growth series for this species. We describe the neurocranium at the earliest developmental stage known for Latimeria, as well as the major changes that the neurocranium undergoes during ontogeny. Changes in the neurocranium are associated with an extreme reduction in the relative size of the brain along with an enlargement of the notochord. The development of the notochord appears to have a major effect on the surrounding cranial components, and might underpin the formation of the intracranial joint. Our results shed light on the interplay between the neurocranium and its adjacent soft tissues during development in Latimeria, and provide insights into the developmental mechanisms that are likely to have underpinned the evolution of neurocranial diversity in sarcopterygian fishes
First Perihelion of EUI on the Solar Orbiter mission
Context. The Extreme Ultraviolet Imager (EUI), onboard Solar Orbiter consists
of three telescopes: the two High Resolution Imagers in EUV (HRIEUV) and in
Lyman-{\alpha} (HRILya), and the Full Sun Imager (FSI). Solar Orbiter/EUI
started its Nominal Mission Phase on 2021 November 27. Aims. EUI images from
the largest scales in the extended corona off limb, down to the smallest
features at the base of the corona and chromosphere. EUI is therefore a key
instrument for the connection science that is at the heart of the Solar Orbiter
mission science goals. Methods. The highest resolution on the Sun is achieved
when Solar Orbiter passes through the perihelion part of its orbit. On 2022
March 26, Solar Orbiter reached for the first time a distance to the Sun close
to 0.3 au. No other coronal EUV imager has been this close to the Sun. Results.
We review the EUI data sets obtained during the period 2022 March-April, when
Solar Orbiter quickly moved from alignment with the Earth (2022 March 6), to
perihelion (2022 March 26), to quadrature with the Earth (2022 March 29). We
highlight the first observational results in these unique data sets and we
report on the in-flight instrument performance. Conclusions. EUI has obtained
the highest resolution images ever of the solar corona in the quiet Sun and
polar coronal holes. Several active regions were imaged at unprecedented
cadences and sequence durations. We identify in this paper a broad range of
features that require deeper studies. Both FSI and HRIEUV operate at design
specifications but HRILya suffered from performance issues near perihelion. We
conclude emphasising the EUI open data policy and encouraging further detailed
analysis of the events highlighted in this paper
Basal Jawed Vertebrate Phylogenomics Using Transcriptomic Data from Solexa Sequencing
The traditionally accepted relationships among basal jawed vertebrates have been challenged by some molecular phylogenetic analyses based on mitochondrial sequences. Those studies split extant gnathostomes into two monophyletic groups: tetrapods and piscine branch, including Chondrichthyes, Actinopterygii and sarcopterygian fishes. Lungfish and bichir are found in a basal position on the piscine branch. Based on transcriptomes of an armored bichir (Polypterus delhezi) and an African lungfish (Protopterus sp.) we generated, expressed sequences and whole genome sequences available from public databases, we obtained 111 genes to reconstruct the phylogenetic tree of basal jawed vertebrates and estimated their times of divergence. Our phylogenomic study supports the traditional relationship. We found that gnathostomes are divided into Chondrichthyes and the Osteichthyes, both with 100% support values (posterior probabilities and bootstrap values). Chimaeras were found to have a basal position among cartilaginous fishes with a 100% support value. Osteichthyes were divided into Actinopterygii and Sarcopterygii with 100% support value. Lungfish and tetrapods form a monophyletic group with 100% posterior probability. Bichir and two teleost species form a monophyletic group with 100% support value. The previous tree, based on mitochondrial data, was significantly rejected by an approximately unbiased test (AU test, pâ=â0). The time of divergence between lungfish and tetrapods was estimated to be 391.8 Ma and the divergence of bichir from pufferfish and medaka was estimated to be 330.6 Ma. These estimates closely match the fossil record. In conclusion, our phylogenomic study successfully resolved the relationship of basal jawed vertebrates based on transtriptomes, EST and whole genome sequences
Slow Solar Wind Connection Science during Solar Orbiterâs First Close Perihelion Passage
The Slow Solar Wind Connection Solar Orbiter Observing Plan (Slow Wind SOOP) was developed to utilize the extensive suite of remote-sensing and in situ instruments on board the ESA/NASA Solar Orbiter mission to answer significant outstanding questions regarding the origin and formation of the slow solar wind. The Slow Wind SOOP was designed to link remote-sensing and in situ measurements of slow wind originating at openâclosed magnetic field boundaries. The SOOP ran just prior to Solar Orbiterâs first close perihelion passage during two remote-sensing windows (RSW1 and RSW2) between 2022 March 3â6 and 2022 March 17â22, while Solar Orbiter was at respective heliocentric distances of 0.55â0.51 and 0.38â0.34 au from the Sun. Coordinated observation campaigns were also conducted by Hinode and IRIS. The magnetic connectivity tool was used, along with low-latency in situ data and full-disk remote-sensing observations, to guide the target pointing of Solar Orbiter. Solar Orbiter targeted an active region complex during RSW1, the boundary of a coronal hole, and the periphery of a decayed active region during RSW2. Postobservation analysis using the magnetic connectivity tool, along with in situ measurements from MAG and SWA/PAS, showed that slow solar wind originating from two out of three of the target regions arrived at the spacecraft with velocities between âŒ210 and 600 km sâ1. The Slow Wind SOOP, despite presenting many challenges, was very successful, providing a blueprint for planning future observation campaigns that rely on the magnetic connectivity of Solar Orbiter
The global abundance of tree palms
Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., â„10 cm diameter at breast height) abundance relative to coâoccurring nonâpalm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of longâterm climate stability. Lifeâform diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many nonâtree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of aboveâground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests
- âŠ