19 research outputs found

    High yield of surveillance in patients diagnosed with constitutional mismatch repair deficiency

    Get PDF
    BackgroundConstitutional mismatch repair deficiency (CMMRD) is a rare autosomal recessively inherited syndrome that is caused by biallelic pathogenic variants of the mismatch repair genes. It is characterised by the development of multiple tumours in the first and second decade of life including brain, gastrointestinal and haematological tumours often resulting in early death. In order to improve the prognosis of these patients, the European collaborative group 'care for CMMRD' developed a surveillance programme in 2014 and established a registry of patients with CMMRD in Paris. The aim of the study was to evaluate the outcome of this programme. MethodsTwenty-two patients with a definitive diagnosis of CMMRD and with at least one follow-up study were selected from the registry. Medical data on the outcome of surveillance were collected from these patients. ResultsDuring a mean follow-up of 4 years, the programme detected eight malignant tumours including three brain tumours, three upper gastrointestinal cancers and two colorectal cancers. Most tumours could successfully be treated. In addition, many adenomas were detected in the duodenum, and colorectum and subsequently removed. Seven patients developed a symptomatic malignancy, including two brain tumours, one small bowel cancer and four haematological malignancies. At the end of the follow-up, 16 out of 22 patients (73%) who participated in the surveillance programme were still alive. ConclusionThe study suggests a beneficial effect of surveillance of the digestive tract and brains.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Repertoire sequencing of B cells elucidates the role of UNG and mismatch repair proteins in somatic hypermutation in humans

    Get PDF
    The generation of high-affinity antibodies depends on somatic hypermutation (SHM). SHM is initiated by the activation-induced cytidine deaminase (AID), which generates uracil (U) lesions in the B-cell receptor (BCR) encoding genes. Error-prone processing of U lesions creates a typical spectrum of point mutations during SHM. The aim of this study was to determine the molecular mechanism of SHM in humans; currently available knowledge is limited by the number of mutations analyzed per patient. We collected a unique cohort of 10 well-defined patients with bi-allelic mutations in genes involved in base excision repair (BER) (UNG) or mismatch repair (MMR) (MSH2, MSH6, or PMS2) and are the first to present next-generation sequencing (NGS) data of the BCR, allowing us to study SHM extensively in humans. Analysis using ARGalaxy revealed selective skewing of SHM mutation patterns specific for each genetic defect, which are in line with the five-pathway model of SHM that was recently proposed based on mice data. However, trans-species comparison revealed differences in the role of PMS2 and MSH2 in strand targeting between mice and man. In conclusion, our results indicate a role for UNG, MSH2, MSH6, and PMS2 in the generation of SHM in humans comparable to their function in mice. However, we observed differences in strand targeting between humans and mice, emphasizing the importance of studying molecular mechanisms in a human setting. The here developed method combining NGS and ARGalaxy analysis of BCR mutation data forms the basis for efficient SHM analyses of other immune deficiencies

    Constitutional Microsatellite Instability, Genotype, and Phenotype Correlations in Constitutional Mismatch Repair Deficiency

    Get PDF
    Background & aims: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood.Methods: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120 7 depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000 7 depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls.Results: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor.Conclusions: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk

    Constitutional Microsatellite Instability, Genotype, and Phenotype Correlations in Constitutional Mismatch Repair Deficiency

    Get PDF
    peer reviewed[en] BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk

    Constitutional microsatellite instability, genotype, and phenotype correlations in constitutional mismatch repair deficiency

    Get PDF
    Background & AimsConstitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype–phenotype correlations using novel MSI markers selected for instability in blood.MethodsThree CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls.ResultsThirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%–100.0%) and specificity (95% CI 97.9%–100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor.ConclusionsWe present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care
    corecore