8 research outputs found

    Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Indole Alkaloids Isolated from Catharanthus roseus (L.) G. Don Cultivated Conventionally and Derived from In vitro Cultures

    Get PDF
    Catharanthus roseus (periwinkle) is a medicinal plant commonly known for its wide biological activity. In many countries different parts of this plant are used for the treatment of diabetes, hypertension and for menstrual regulation. Due to the ability of production of alkaloids, which can be applied in cancer therapy, is still extensively investigated. Two of the most valuable alkaloids (vincristine and vinblastine) are present in C. roseus in very low concentrations. Micropropagation is promising technique used to enhance the level of important secondary metabolites. The main objective of present study was alkaloids extraction from plants cultivated conventionally and derived from in vitro cultures. In this order the aerial parts of periwinkle were extracted with 96% ethanol at room temperature (method I) and heated with 96% ethanol at 55 °C for 90 minutes (method II). The obtained mixtures of different indole alkaloids were analyzed by gas chromatography – mass spectrometry (GC-MS). Analysis revealed the presence of 15 alkaloids, among which vindoline, vindorosine, isovindolinine and ajmalicine were the most abundant. The obtained results indicated that the propagation method had a significant effect on the percentage content of alkaloids in C. roseus herb. Plants derived from in vitro cultures were richer in vindorosine and vindoline, while conventionally cultivated – in tetrahydroalstonine and ajmalicine. Moreover, in case of isovindolinine, vindolinine and ajmalicine, extraction at 55 °C was more effective, while for pericyclivine – maceration at room temperature. Interestingly, the pericyclivine was not detected in the mixture of alkaloids obtained from periwinkle herb by the extraction at 55 °C

    Wastewater reuse

    No full text
    Once freshwater has been used for an economic or beneficial purpose, it is generally discarded as waste. In many countries, these wastewaters are discharged, either as untreated waste or as treated effluent, into natural watercourses, from which they are abstracted for further use after undergoing "self-purification" within the stream. Through this system of indirect reuse, wastewater may be reused up to a dozen times or more before being discharged to the sea. Such indirect reuse is common in the larger river systems of Latin America. However, more direct reuse is also possible: the technology to reclaim wastewaters as potable or process waters is a technically feasible option for agricultural and some industrial purposes (such as for cooling water or sanitary flushing), and is a largely experimental option for the supply of domestic water. Wastewater reuse for drinking raises public health, and possibly religious, concerns among consumers. The adoption of wastewater treatment and subsequent reuse as a means of supplying freshwater is also determined by economic factors. Human excreta and wastewater contains useful materials. These are water, organic carbon and nutrients and should be regarded as a resource. In their natural cycles, they are broken down by micro-organisms and become accessible to plants and animals, thus sustaining natural ecosystems. When improperly disposed, these substances can cause pollution. This is because the organic materials exert oxygen demand, and the nutrients promote algal growth in lakes, rivers and near-shore marine environments. Human excreta and wastewater also contain pathogens. Reuse of the wastes must ensure that public health is maintained. Planned reuse is the key to wastewater reuse. Planning for reuse ensures that public health and protection of the environment are taken into account. Reuse of treated wastewater for irrigation of crops, for example, will need to meet (i) standards for indicator pathogens, and (ii) plant requirement for water, nitrogen and phosphorus. WHO and others have developed standards for reuse of wastewater for various purposes. Further details of these standards can be found in the Regional Overviews in the Source Book, published by IWA and IETC. It must be pointed out, however, that requirements for water and nutrients are plant-specific and site-specific (dependent on soil type and climate), and information on these requirements need to be obtained from local information sources

    Problems Nature 2000 sites

    No full text
    In spite of widespread support from the population of most member countries for European Union policy, including support for sustainable development, in many EU countries, the levels of acceptance of new environmental protection programmes have been and, in particular in new member states, still are considerably low. The experience of the countries which were the first to implement union directives show that they cannot be effectively applied without widespread public participation. The goal of this study was, using the example of Poland, to assess public acceptance of the expansion of nature conservation in the context of sustainable development principles and to discover whether existing nature governance should be modified when establishing new protected areas. The increase in protected areas in Poland has become a hotbed of numerous conflicts. In spite of the generally favourable attitudes to Nature that Polish people have, Nature 2000 is perceived as an unnecessary additional conservation tool. Both local authorities and communities residing in the Natura areas think that the programme is a hindrance, rather than a help in the economic development of municipalities or regions, as was initially supposed. This lack of acceptance results from many factors, mainly social, historic and economic. The implications of these findings for current approach to Nature governance in Poland are discussed

    Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Indole Alkaloids Isolated from <i>Catharanthus roseus </i> (L.) G. Don Cultivated Conventionally and Derived from In vitro Cultures

    No full text
    Catharanthus roseus (periwinkle) is a medicinal plant commonly known for its wide biological activity. In many countries different parts of this plant are used for the treatment of diabetes, hypertension and for menstrual regulation. Due to the ability of production of alkaloids, which can be applied in cancer therapy, is still extensively investigated. Two of the most valuable alkaloids (vincristine and vinblastine) are present in C. roseus in very low concentrations. Micropropagation is promising technique used to enhance the level of important secondary metabolites. The main objective of present study was alkaloids extraction from plants cultivated conventionally and derived from in vitro cultures. In this order the aerial parts of periwinkle were extracted with 96% ethanol at room temperature (method I) and heated with 96% ethanol at 55 °C for 90 minutes (method II). The obtained mixtures of different indole alkaloids were analyzed by gas chromatography – mass spectrometry (GC-MS). Analysis revealed the presence of 15 alkaloids, among which vindoline, vindorosine, isovindolinine and ajmalicine were the most abundant. The obtained results indicated that the propagation method had a significant effect on the percentage content of alkaloids in C. roseus herb. Plants derived from in vitro cultures were richer in vindorosine and vindoline, while conventionally cultivated – in tetrahydroalstonine and ajmalicine. Moreover, in case of isovindolinine, vindolinine and ajmalicine, extraction at 55 °C was more effective, while for pericyclivine – maceration at room temperature. Interestingly, the pericyclivine was not detected in the mixture of alkaloids obtained from periwinkle herb by the extraction at 55 °C

    CONTENT OF BIOLOGICALLY ACTIVE COMPOUNDS INWATER EXTRACTS OF PERIWINKLE (CATHARANTHUS ROSEUS (L.) G. DON)

    No full text
    The experiment was carried out in the year 2013. The experimental plant material consisted of herb (leafy flowered stems) and leaves of periwinkle (Catharanthus roseus (L.) G. Don). The aim of the study was to compare the content of biologically active compounds (L-ascorbic acid, total polyphenols), dry matter, and antioxidant activity of fresh and dried plant material. Moreover, on the base of the dried plant material (herb and leaves of periwinkle), three kinds of water extracts were prepared: infusions, decoctions and macerates; with three times of extraction. In the obtained water extracts content of dry matter, L-ascorbic acid, total polyphenols and antioxidant activity were determined. On the base of the study results it was shown that fresh leaves of periwinkle had higher biological value in comparison with its herb. However, after drying process higher content of biologically active compounds was noted for the herb. 15 min/h decoction was found to be the most effective method of water extraction of dried perwinkle herb and leaves. Moreover, herb water extracts were characterized by higher content of polyphenols, while leaf water extracts – by higher content of dry matter, L-ascorbic acid and antioxidant activity

    Wastewater treatment technologies

    No full text
    The article presents an application of multi-criteria analysis for selection of the best treatment technology and the best technical solution to the running of a large and a small wastewater treatment plant. The calculations performed for two plant capacities and for various effluent standards are based on a compromise programming method. The effluent standards considered for the smaller plant are only BOD5, COD and TSS, while for the larger plant also nitrogen and phosphorus. For each plant’s capacity, three different treatment technologies are analyzed. The analyzed technologies included biofilters, continuous and cyclic activated sludge, rotating biological contactors and natural treatment methods. The selection of the best technology is done with a define set of sustainability criteria that can be easily modified and adjusted to specific local conditions. The proposed method can be used for selection of the best treatment technology and the most appropriate technical solution from a sustainability standpoint, at the stage of wastewater system planning and designing, as well as for evaluation of already operating plants
    corecore