26 research outputs found

    Doping dependence of the Nernst effect in Eu(Fe1-xCox)2As2 - departure from Dirac fermions physics

    Full text link
    We report a systematic study of the transport properties in the series of Eu(Fe1-xCox)2As2 single crystals with x = 0, 0.15, 0.20 and 0.30. Spin-density-wave order is observed in the undoped and the least doped samples (x = 0, 0.15), while for x = 0.15 and 0.20 Eu(Fe1-xCox)2As2 becomes a superconductor. We found the properties of the parent EuFe2As2 compound well described by the Dirac fermions model, whereas cobalt doping caused an evolution of the system toward a regular metallic state. The antiferromagnetic ordering of the Eu2+ ions at T_N ~ 20 K has only minor influence on the measured quantities.Comment: 5 pages, 5 figures; ver.3: the sign convention for the Nernst coefficient is change

    Non-adiabatic effects in the phonon dispersion of Mg 1--x Al x B 2

    Full text link
    Superconducting MgB_2\_2 shows an E_2g\_{2g} zone center phonon, as measured by Raman spectroscopy, that is very broad in energy and temperature dependent. The Raman shift and lifetime show large differences with the values elsewhere in the Brillouin Zone measured by Inelastic X-ray Scattering (IXS), where its dispersion can be accounted for by standard harmonic phonon theory, adding only a moderate electron-phonon coupling. Here we show that the effects rapidly disappear when electron-phonon coupling is switched off by Al substitution on the Mg sites. Moreover, using IXS with very high wave-vector resolution in MgB_2\_2, we can follow the dispersion connecting the Raman and the IXS signal, in agreement with a theory using only electron-phonon coupling but without strong anharmonic terms. The observation is important in order to understand the effects of electron-phonon coupling on zone center phonons modes in MgB_2\_2, but also in all metals characterized by a small Fermi velocity in a particular direction, typical for layered compounds

    Structural and Superconducting Properties of RbOs2O6 Single Crystals

    Full text link
    Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedral networks is lower and the displacement parameters of alkali metal atoms are smaller than for KOs2O6, so the "rattling" of the alkali atoms in RbOs2O6 is less pronounced. Superconducting properties of RbOs2O6 in the mixed state have been well described within the London approach and the Ginzburg-Landau parameter kappa(0) = 31 has been derived from the reversible magnetization. This parameter is field dependent and changes at low temperatures from kappa = 22 (low fields) to kappa = 31 at H_{c2}. The thermodynamic critical field H_{c}(0) = 1.3 kOe and the superconducting gap 2delta/k_{B}T_{c} = 3.2 have been estimated. These results together with slightly different H_{c2}(T) dependence obtained for crystals and polycrystalline RbOs2O6 proof evidently that this compound is a weak-coupling BCS-type superconductor close to the dirty limit.Comment: 20 pages, 8 figures, 3 table

    High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications

    Full text link
    Superconducting technology provides most sensitive field detectors, promising implementations of qubits and high field magnets for medical imaging and for most powerful particle accelerators. Thus, with the discovery of new superconducting materials, such as the iron pnictides, exploring their potential for applications is one of the foremost tasks. Even if the critical temperature Tc is high, intrinsic electronic properties might render applications rather difficult, particularly if extreme electronic anisotropy prevents effective pinning of vortices and thus severely limits the critical current density, a problem well known for cuprates. While many questions concerning microscopic electronic properties of the iron pnictides have been successfully addressed and estimates point to a very high upper critical field, their application potential is less clarified. Thus we focus here on the critical currents, their anisotropy and the onset of electrical dissipation in high magnetic fields up to 65 T. Our detailed study of the transport properties of optimally doped SmFeAs(O,F) single crystals reveals a promising combination of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities along all crystal directions. This favorable intragrain current transport in SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a crucial requirement for possible applications. Essential in these experiments are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with sub-\mu\m^2 cross-section, with current along and perpendicular to the crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed magnetic fields. The pinning forces have been characterized by scaling the magnetically measured "peak effect"
    corecore