35 research outputs found

    Biofilm Induced Tolerance towards Antimicrobial Peptides

    Get PDF
    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms

    Effects of Resonant Electromagnetic Fields on Biofilm Formation in Pseudomonas aeruginosa

    No full text
    The global rise of antimicrobial resistance (AMR) constitutes a future health threat and dictates a need to explore alternative and non-chemical approaches. The aim of this study was to explore the use of weak resonant electromagnetic fields as a method to disrupt biofilm formation of a pathogenic bacterium in cystic fibrosis patients. We developed a bioresonance laboratory setup able to distinguish between changes in planktonic growth and changes in biofilm formation and showed that certain resonant frequencies were able to affect biofilm formation without affecting planktonic growth. In addition, we show that the ambient day-to-day magnetic field affects biofilm formation in a non-consistent manner. Overall, we conclude that our assay is suitable for studying the potential of resonant magnetic fields as a treatment and prevention strategy to prevent biofilm infections, and that certain resonant frequencies may be used as future medical applications to combat antimicrobial resistance

    Characterization of Type 2 Quorum Sensing in Klebsiella pneumoniae and Relationship with Biofilm Formation

    No full text
    Quorum sensing is a process by which bacteria communicate by using secreted chemical signaling molecules called autoinducers. Many bacterial species modulate the expression of a wide variety of physiological functions in response to changes in population density by this mechanism. In this study, the opportunistic pathogen Klebsiella pneumoniae was observed to secrete type 2 signaling molecules. A homologue of luxS, the gene required for AI-2 synthesis in Vibrio harveyi, was isolated from the K. pneumoniae genome. A V. harveyi bioassay showed the luxS functionality in K. pneumoniae and its ability to complement the luxS-negative phenotype of Escherichia coli DH5α. Autoinducer activity was detected in the supernatant, and maximum expression of specific messengers detected by quantitative reverse transcription-PCR analysis occurred during the late exponential phase. The highest levels of AI-2 were observed in minimal medium supplemented with glycerol. To determine the potential role of luxS in colonization processes, a K. pneumoniae luxS isogenic mutant was constructed and tested for its capacity to form biofilms in vitro on an abiotic surface and to colonize the intestinal tract in a murine model. No difference was observed in the level of intestinal colonization between the wild-type strain and the luxS mutant. Microscopic analysis of biofilm structures revealed that the luxS mutant was able to form a mature biofilm but with reduced capacities in the development of microcolonies, mostly in the early steps of biofilm formation. These data suggest that a LuxS-dependent signal plays a role in the early stages of biofilm formation by K. pneumoniae

    Metabolic Commensalism and Competition in a Two-Species Microbial Consortium

    No full text
    We analyzed metabolic interactions and the importance of specific structural relationships in a benzyl alcohol-degrading microbial consortium comprising two species, Pseudomonas putida strain R1 and Acinetobacter strain C6, both of which are able to utilize benzyl alcohol as their sole carbon and energy source. The organisms were grown either as surface-attached organisms (biofilms) in flow chambers or as suspended cultures in chemostats. The numbers of CFU of P. putida R1 and Acinetobacter strain C6 were determined in chemostats and from the effluents of the flow chambers. When the two species were grown together in chemostats with limiting concentrations of benzyl alcohol, Acinetobacter strain C6 outnumbered P. putida R1 (500:1), whereas under similar growth conditions in biofilms, P. putida R1 was present in higher numbers than Acinetobacter strain C6 (5:1). In order to explain this difference, investigations of microbial activities and structural relationships were carried out in the biofilms. Insertion into P. putida R1 of a fusion between the growth rate-regulated rRNA promoter rrnBP1 and a gfp gene encoding an unstable variant of the green fluorescent protein made it possible to monitor the physiological activity of P. putida R1 cells at different positions in the biofilms. Combining this with fluorescent in situ hybridization and scanning confocal laser microscopy showed that the two organisms compete or display commensal interactions depending on their relative physical positioning in the biofilm. In the initial phase of biofilm development, the growth activity of P. putida R1 was shown to be higher near microcolonies of Acinetobacter strain C6. High-pressure liquid chromatography analysis showed that in the effluent of the Acinetobacter strain C6 monoculture biofilm the metabolic intermediate benzoate accumulated, whereas in the biculture biofilms this was not the case, suggesting that in these biofilms the excess benzoate produced by Acinetobacter strain C6 leaks into the surrounding environment, from where it is metabolized by P. putida R1. After a few days, Acinetobacter strain C6 colonies were overgrown by P. putida R1 cells and new structures developed, in which microcolonies of Acinetobacter strain C6 cells were established in the upper layer of the biofilm. In this way the two organisms developed structural relationships allowing Acinetobacter strain C6 to be close to the bulk liquid with high concentrations of benzyl alcohol and allowing P. putida R1 to benefit from the benzoate leaking from Acinetobacter strain C6. We conclude that in chemostats, where the organisms cannot establish in fixed positions, the two strains will compete for the primary carbon source, benzyl alcohol, which apparently gives Acinetobacter strain C6 a growth advantage, probably because it converts benzyl alcohol to benzoate with a higher yield per time unit than P. putida R1. In biofilms, however, the organisms establish structured, surface-attached consortia, in which heterogeneous ecological niches develop, and under these conditions competition for the primary carbon source is not the only determinant of biomass and population structure

    Characterization of a Pseudomonas putida Rough Variant Evolved in a Mixed-Species Biofilm with Acinetobacter sp. Strain C6â–ż

    No full text
    Genetic differentiation by natural selection is readily observed among microbial populations, but a more comprehensive understanding of evolutionary forces, genetic causes, and resulting phenotypic advantages is not often sought. Recently, a surface population of Pseudomonas putida bacteria was shown to evolve rapidly by natural selection of better-adapted variants in a mixed-species biofilm consortium (S. K. Hansen, P. B. Rainey, J. A. Haagensen, and S. Molin, Nature 445:533-536, 2007). Adaptation was caused by mutations in a wapH homolog (PP4943) involved in core lipopolysaccharide biosynthesis. Here we investigate further the biofilm physiology and the phenotypic characteristics of the selected P. putida rough colony variants. The coexistence of the P. putida population in a mixed-species biofilm with Acinetobacter sp. strain C6 is dependent on the benzoate excreted from Acinetobacter during the catabolism of benzyl alcohol, the sole carbon source. Examination of biofilm development and the dynamics of the wild-type consortium revealed that the biofilm environment became oxygen limited, possibly with low oxygen concentrations around Acinetobacter microcolonies. In contrast to P. putida wild-type cells, which readily dispersed from the mixed-species biofilm in response to oxygen starvation, the rough variant cells displayed a nondispersal phenotype. However, in monospecies biofilms proliferating on benzoate, the rough variant (like the wild-type population) dispersed in response to oxygen starvation. A key factor explaining this conditional, nondispersal phenotype is likely to be the acquired ability of the rough variant to coaggregate specifically with Acinetobacter cells. We further show that the P. putida rough variant displayed enhanced production of a cellulose-like polymer as a consequence of the mutation in wapH. The resulting phenotypic characteristics of the P. putida rough variant explain its enhanced fitness and ability to form tight structural associations with Acinetobacter microcolonies

    Evolutionary highways to persistent bacterial infection

    Get PDF
    The pathogen Pseudomonas aeruginosa undergoes complex trait adaptation within cystic fibrosis patients. Here, Bartell, Sommer, and colleagues use statistical modeling of longitudinal isolates to characterize the joint genetic and phenotypic evolutionary trajectories of P. aeruginosa within hosts
    corecore