5 research outputs found

    Alteration of Microbial Communities Colonizing Leaf Litter in a Temperate Woodland Stream by Growth of Trees Under Conditions of Elevated Atmospheric CO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Elevated atmospheric CO2 can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO2 would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO2, and their leaves were incubated in a woodland stream. Elevated-CO2 treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO2 treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall Gram-positive bacterial sequences

    Elevated Atmospheric CO 2 Alters Soil Microbial Communities Associated with Trembling Aspen ( Populus tremuloides ) Roots

    Full text link
    Global atmospheric CO 2 levels are expected to double within the next 50 years. To assess the effects of increased atmospheric CO 2 on soil ecosystems, cloned trembling aspen ( Populus tremuloides ) seedlings were grown individually in 1 m 3 open bottom root boxes under either elevated (720 ppm, ELEV) or ambient CO 2 (360 ppm, AMB). After 5 years, soil cores (40 cm depth) were collected from the root boxes and divided into 0–20 cm and 20–40 cm fractions. ELEV treatment resulted in significant decreases in both soil nitrate and total soil nitrogen in both the 0–20 cm and 20–40 cm soil fractions, with a 47% decrease in soil nitrate and a 50% decrease in total soil nitrogen occurring in the 0–20 cm fraction. ELEV treatment did not result in a significant change in the amount of soil microbial biomass. However, analysis of indicator phospholipid fatty acids (PLFA) indicated that ELEV treatment did result in significant increases in PLFA indicators for fungi and Gram-negative bacteria in the 0–20 cm fraction. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to analyze the composition of the soil bacterial communities (using primers targeting the 16SrRNA gene) and the soil fungal communities (using primers targeting the intergenic transcribed spacer region). T-RFLP analysis revealed shifts in both bacterial and fungal community structure, as well as increases in both bacterial and fungal species richness with ELEV treatment. These results indicated that increased atmospheric CO 2 had significant effects on both soil nutrient availability and the community composition of soil microbes associated with aspen roots.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48116/1/248_2004_Article_120.pd

    Alteration of Microbial Communities Colonizing Leaf Litter in a Temperate Woodland Stream by Growth of Trees under Conditions of Elevated Atmospheric CO2 â–¿

    No full text
    Elevated atmospheric CO2 can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO2 would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO2, and their leaves were incubated in a woodland stream. Elevated-CO2 treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO2 treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall Gram-positive bacterial sequences
    corecore