48 research outputs found

    Airway epithelial specific deletion of Jun-N-terminal kinase 1 attenuates pulmonary fibrosis in two independent mouse models

    Get PDF
    © 2020 van der Velden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The stress-induced kinase, c-Jun-N-terminal kinase 1 (JNK1) has previously been implicated in the pathogenesis of lung fibrosis. However, the exact cell type(s) wherein JNK1 exerts its pro-fibrotic role(s) remained enigmatic. Herein we demonstrate prominent activation of JNK in bronchial epithelia using the mouse models of bleomycin- or AdTGFβ1-induced fibrosis. Furthermore, in lung tissues of patients with idiopathic pulmonary fibrosis (IPF), active JNK was observed in various regions including type I and type II pneumocytes and fibroblasts. No JNK activity was observed in adjacent normal tissue or in normal control tissue. To address the role of epithelial JNK1, we ablated Jnk1 form bronchiolar and alveolar type II epithelial cells using CCSP-directed Cre recombinase-mediated ablation of LoxP-flanked Jnk1 alleles. Our results demonstrate that ablation of Jnk1 from airway epithelia resulted in a strong protection from bleomycin- or adenovirus expressing active transforming growth factor beta-1 (AdTGFβ1)-induced fibrosis. Ablation of the Jnk1 allele at a time when collagen increases were already present showed a reversal of existing increases in collagen content. Epithelial Jnk1 ablation resulted in attenuation of mesenchymal genes and proteins in lung tissue and preserved expression of epithelial genes. Collectively, these data suggest that epithelial JNK1 contributes to the pathogenesis of pulmonary fibrosis. Given the presence of active JNK in lungs from patients with IPF, targeting JNK1 in airway epithelia may represent a potential treatment strategy to combat this devastating disease

    Free radical activity of PM10: iron-mediated generation of hydroxyl radicals.

    Get PDF
    The purpose of this study was to test the hypothesis that particulate matter < or = 10 microns in aerodynamic diameter (PM10) particles have the ability to generate free radical activity at their surface. We collected PM10 filters from the Edinburgh, United Kingdom, Enhanced Urban Network sampling site, removed particles from the filter, and tested their ability to cause free radical damage to supercoiled plasmid DNA. We found that the PM10 particles did cause damage to the DNA that was mediated by hydroxyl radicals, as shown by inhibition of the injury with mannitol. The PM10-associated hydroxyl radical activity was confirmed using a high-performance liquid chromatography-based assay to measure the hydroxyl radical adduct of salicylic acid. Desferrioxamine abolished the hydroxyl radical-mediated injury, which suggests that iron was involved. Analysis of PM10 filters confirmed the presence of large amounts of iron and leaching studies confirmed that the PM10 samples could release substantial amounts of Fe(III) and lesser amounts of Fe(II). To investigate the size of the particles involved in the hydroxyl radical injury, we centrifuged the suspension of PM10 to clarity, tested the clear supernatant, and found that it had all of the suspension activity. We conclude, therefore, that the free radical activity is derived either from a fraction that is not centrifugeable on a bench centrifuge, or that the radical generating system is released into solution

    DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    Get PDF
    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite-induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management

    DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    Get PDF
    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite-induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management

    Biological effects of naturally occurring and man-made fibres: in vitro cytotoxicity and mutagenesis in mammalian cells

    Get PDF
    Cytotoxicity and mutagenicity of tremolite, erionite and the man-made ceramic (RCF-1) fibre were studied using the human– hamster hybrid A L cells. Results from these fibres were compared with those of UICC Rhodesian chrysotile fibres. The A L cell mutation assay, based on the S1 gene marker located on human chromosome 11, the only human chromosome contained in the hybrid cell, has been shown to be more sensitive than conventional assays in detecting deletion mutations. Tremolite, erionite and RCF-1 fibres were significantly less cytotoxic to A L cells than chrysotile. Mutagenesis studies at the HPRT locus revealed no significant mutant yield with any of these fibres. In contrast, both erionite and tremolite induced dose-dependent S1− mutations in fibre-exposed cells, with the former inducing a significantly higher mutant yield than the latter fibre type. On the other hand, RCF-1 fibres were largely non-mutagenic. At equitoxic doses (cell survival at ∼ 0.7), erionite was found to be the most potent mutagen among the three fibres tested and at a level comparable to that of chrysotile fibres. These results indicate that RCF-1 fibres are non-genotoxic under the conditions used in the studies and suggest that the high mesothelioma incidence previously observed in hamster may either be a result of selective sensitivity of hamster pleura to fibre-induced chronic irritation or as a result of prolonged fibre treatment. Furthermore, the relatively high mutagenic potential for erionite is consistent with its documented carcinogenicity. © 1999 Cancer Research Campaig

    Antiradical Activity and in Vitro

    No full text

    The Effect of Flavored E-cigarettes on Murine Allergic Airways Disease

    Full text link
    © 2019, The Author(s). Flavored e-cigarettes are preferred by the majority of users yet their potential toxicity is unknown. Therefore our aim was to determine the effect of selected flavored e-cigarettes, with or without nicotine, on allergic airways disease in mice. Balb/c mice were challenged with PBS or house dust mite (HDM) (Days 0, 7, 14–18) and exposed to room air or e-cigarette aerosol for 30 min twice daily, 6 days/week from Days 0–18 (n = 8–12/group). Mice were exposed to Room Air, vehicle control (50%VG/%50PG), Black Licorice, Kola, Banana Pudding or Cinnacide without or with 12 mg/mL nicotine. Mice were assessed at 72 hours after the final HDM challenge. Compared to mice challenged with HDM and exposed to Room Air, nicotine-free Cinnacide reduced airway inflammation (p = 0.045) and increased peripheral airway hyperresponsiveness (p = 0.02), nicotine-free Banana Pudding increased soluble lung collagen (p = 0.049), with a trend towards increased airway inflammation with nicotine-free Black Licorice exposure (p = 0.089). In contrast, all e-cigarettes containing nicotine suppressed airway inflammation (p < 0.001 for all) but did not alter airway hyperresponsiveness or airway remodeling. Flavored e-cigarettes without nicotine had significant but heterogeneous effects on features of allergic airways disease. This suggests that some flavored e-cigarettes may alter asthma pathophysiology even when used without nicotine
    corecore