15,706 research outputs found
Pulmonary giant cells and their significance for the diagnosis of asphyxiation
This study was performed to prove whether the detection of polynuclear giant cells in lungs is useful for the diagnosis of asphyxiation due to throttling or strangulation. Therefore, lung specimens of 54 individuals with different natural and unnatural causes of death were investigated. In most lungs examined numerous alveolar macrophages with 1-2 nuclei were found. Polynuclear giant cells, which were arbitrarily defined as alveolar macrophages containing 3 or more nuclei, were observed in all groups investigated except in the cases of hypoxia due to covering the head with plastic bags. Apparent differences between the other groups in particular an increased number in cases of throttling or strangulation, could not be observed. Immunohistochemical investigations confirmed the hypothesis that the observed polynuclear giant cells were derived from alveolar macrophages. The immunohistochemical analysis of the proliferation marker antigen Ki 67 revealed no positive reaction in the nuclei of polynuclear giant cells indicating that these cells had not developed shortly before death by endomitosis as an adaptative change following reduction in oxygen supply. The results provide evidence that the detection of pulmonary polynuclear giant cells cannot be used as a practical indicator for death by asphyxiation due to throttling or strangulation
A small sealed Ta crucible for thermal analysis of volatile metallic samples
Differential thermal analysis on metallic alloys containing volatile elements
can be highly problematic. Here we show how measurements can be performed in
commercial, small-sample, equipment without modification. This is achieved by
using a sealed Ta crucible, easily fabricated from Ta tubing and sealed in a
standard arc furnace. The crucible performance is demonstrated by measurements
on a mixture of Mg and MgB, after heating up to 1470. We
also show data, measured on an alloy with composition GdMg, that
clearly shows both the liquidus and a peritectic, and is consistent with
published phase diagram data
Disordered Electrons in a Strong Magnetic Field: Transfer Matrix Approaches to the Statistics of the Local Density of States
We present two novel approaches to establish the local density of states as
an order parameter field for the Anderson transition problem. We first
demonstrate for 2D quantum Hall systems the validity of conformal scaling
relations which are characteristic of order parameter fields. Second we show
the equivalence between the critical statistics of eigenvectors of the
Hamiltonian and of the transfer matrix, respectively. Based on this equivalence
we obtain the order parameter exponent for 3D quantum
Hall systems.Comment: 4 pages, 3 Postscript figures, corrected scale in Fig.
Alveolar macrophages and the diagnosis of drowning
In the present study, we examined the number of alveolar macrophages in lung tissue from 17 cases of fresh water drowning, 22 cases of acute death and 6 cases of lung emphysema. When counting only the number of alveolar macrophages per alveolus without consideration of the alveolar size we found no relevant differences between the groups investigated. To exclude any influence of the alveolar size on the results the surface density of the alveolar macrophages and interstitial tissue was estimated and compared in the different groups. In cases of drowning, the lungs showed significantly lower values in both categories. The ratio of ‘alveolar macrophages/interstitial tissue’ was also reduced in cases of drowning in comparison to the other groups, however, without significant differences. These morphometrical results characterizing the ‘emphysema aquosum’ with almost ‘empty’ and dilated alveoli could be explained by a wash-out effect of the drowning fluid leading to a partial removal of the macrophages from the alveoli. This hypothesis was confirmed by the detection of alveolar macrophages in the drowning froth by immunohistochemical analysis. Even though alveolar macrophages were unambiguously identified in advanced putrefied lungs in HE-stained sections as well as by immunohistochemical staining, an estimation of the number of these cells cannot provide further information for the diagnosis of drowning in putrefied corpses due to the autolytic destruction of the lung architecture providing no reliable values
Multifractal properties of resistor diode percolation
Focusing on multifractal properties we investigate electric transport on
random resistor diode networks at the phase transition between the
non-percolating and the directed percolating phase. Building on first
principles such as symmetries and relevance we derive a field theoretic
Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of
the current distribution that are governed by a family of critical exponents
. We calculate the family to two-loop order in a
diagrammatic perturbation calculation augmented by renormalization group
methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.
Influence of humidity on granular packings with moving walls
A significant dependence on the relative humidity H for the apparent mass
(Mapp) measured at the bottom of a granular packing inside a vertical tube in
relative motion is demonstrated experimentally. While the predictions of
Janssen's model are verified for all values of H investigated (25%< H <80%),
Mapp increases with time towards a limiting value at high relative humidities
(H>60%) but remains constant at lower ones (H=25%). The corresponding Janssen
length is nearly independent of the tube velocity for H>60% but decreases
markedly for H=25%. Other differences are observed on the motion of individual
beads in the packing. For H=25%, they are almost motionless while the mean
particle fraction of the packing remains constant; for H>60% the bead motion is
much more significant and the mean particle fraction decreases. The dependence
of these results on the bead diameter and their interpretation in terms of the
influence of capillary forces are discussed.Comment: 6 pages, 6 figure
Do Auctions Select Efficient Firms?
This paper considers a government auctioning off multiple licenses to firms who compete in a market after the auction. Firms have different costs, and cost efficiency is private information at the auction stage and the market competition stage. If only one license is auctioned, standard results say that the most efficient firm wins the auction (license) as it will get the highest profit in the aftermarket, i.e., it has the highest valuation for the license. This paper argues that this result does not generalize to the case of multiple licenses and aftermarket competition. In particular, we determine conditions under which auctions may select inefficient firms and therefore lead to an inefficient allocation of resources. Strategic interactions in the aftermarket, in particular firms’ preferences to compete with the least cost-efficient firms rather than with the most efficient firms, are responsible for our result
Spreading with immunization in high dimensions
We investigate a model of epidemic spreading with partial immunization which
is controlled by two probabilities, namely, for first infections, , and
reinfections, . When the two probabilities are equal, the model reduces to
directed percolation, while for perfect immunization one obtains the general
epidemic process belonging to the universality class of dynamical percolation.
We focus on the critical behavior in the vicinity of the directed percolation
point, especially in high dimensions . It is argued that the clusters of
immune sites are compact for . This observation implies that a
recently introduced scaling argument, suggesting a stretched exponential decay
of the survival probability for , in one spatial dimension,
where denotes the critical threshold for directed percolation, should
apply in any dimension and maybe for as well. Moreover, we
show that the phase transition line, connecting the critical points of directed
percolation and of dynamical percolation, terminates in the critical point of
directed percolation with vanishing slope for and with finite slope for
. Furthermore, an exponent is identified for the temporal correlation
length for the case of and , , which
is different from the exponent of directed percolation. We also
improve numerical estimates of several critical parameters and exponents,
especially for dynamical percolation in .Comment: LaTeX, IOP-style, 18 pages, 9 eps figures, minor changes, additional
reference
Distinct order of Gd 4f and Fe 3d moments coexisting in GdFe4Al8
Single crystals of flux-grown tetragonal GdFe4Al8 were characterized by
thermodynamic, transport, and x-ray resonant magnetic scattering measurements.
In addition to antiferromagnetic order at TN ~ 155 K, two low-temperature
transitions at T1 ~ 21 K and T2 ~ 27 K were identified. The Fe moments order at
TN with an incommensurate propagation vector (tau,tau,0) with tau varying
between 0.06 and 0.14 as a function of temperature, and maintain this order
over the entire T<TN range. The Gd 4f moments order below T2 with a
ferromagnetic component mainly out of plane. Below T1, the ferromagnetic
components are confined to the crystallographic plane. Remarkably, at low
temperatures the Fe moments maintain the same modulation as at high
temperatures, but the Gd 4f moments apparently do not follow this modulation.
The magnetic phase diagrams for fields applied in [110] and [001] direction are
presented and possible magnetic structures are discussed.Comment: v2: 14 pages, 12 figures; PRB in prin
- …