23,123 research outputs found

    Non-Abelian Giant Gravitons

    Get PDF
    We argue that the giant graviton configurations known from the literature have a complementary, microscopical description in terms of multiple gravitational waves undergoing a dielectric (or magnetic moment) effect. We present a non-Abelian effective action for these gravitational waves with dielectric couplings and show that stable dielectric solutions exist. These solutions agree in the large NN limit with the giant graviton configurations in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in Leuven, Belgium, September 200

    Dielectric branes in non-trivial backgrounds

    Full text link
    We present a procedure to evaluate the action for dielectric branes in non-trivial backgrounds. These backgrounds must be capable to be taken into a Kaluza-Klein form, with some non-zero wrapping factor. We derive the way this wrapping factor is gauged away. Examples of this are AdS_5xS^5 and AdS_3xS^3xT^4, where we perform the construction of different stable systems, which stability relies in its dielectric character.Comment: 14 pages, published versio

    Bromophenyl functionalization of carbon nanotubes : an ab initio study

    Get PDF
    We study the thermodynamics of bromophenyl functionalization of carbon nanotubes with respect to diameter and metallic/insulating character using density-functional theory (DFT). On one hand, we show that the activation energy for the grafting of a bromophenyl molecule onto a semiconducting zigzag nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to diameter within numerical accuracy. On the other hand, the binding energy of a single bromophenyl molecule shows a clear diameter dependence and ranges from 1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube. This is in part explained by the transition from sp2 to sp3 bonding occurring to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that smaller nanotubes are closer to a sp3 hybridization than larger ones due to increased curvature. Since a second bromophenyl unit can attach without energy barrier next to an isolated grafted unit, they are assumed to exist in pairs. The para configuration is found to be favored for the pairs and their binding energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0) nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius dependence is derived using a tight binding hamiltonian and first order perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube radius) is verified by our DFT results within numerical accuracy. Finally, metallic nanotubes are found to be more reactive than semiconducting nanotubes, a feature that can be explained by a non-zero density of states at the Fermi level for metallic nanotubes.Comment: 7 pages, 5 figures and 3 table

    rPICARD: A CASA-based Calibration Pipeline for VLBI Data

    Full text link
    Currently, HOPS and AIPS are the primary choices for the time-consuming process of (millimeter) Very Long Baseline Interferometry (VLBI) data calibration. However, for a full end-to-end pipeline, they either lack the ability to perform easily scriptable incremental calibration or do not provide full control over the workflow with the ability to manipulate and edit calibration solutions directly. The Common Astronomy Software Application (CASA) offers all these abilities, together with a secure development future and an intuitive Python interface, which is very attractive for young radio astronomers. Inspired by the recent addition of a global fringe-fitter, the capability to convert FITS-IDI files to measurement sets, and amplitude calibration routines based on ANTAB metadata, we have developed the the CASA-based Radboud PIpeline for the Calibration of high Angular Resolution Data (rPICARD). The pipeline will be able to handle data from multiple arrays: EHT, GMVA, VLBA and the EVN in the first release. Polarization and phase-referencing calibration are supported and a spectral line mode will be added in the future. The large bandwidths of future radio observatories ask for a scalable reduction software. Within CASA, a message passing interface (MPI) implementation is used for parallelization, reducing the total time needed for processing. The most significant gain is obtained for the time-consuming fringe-fitting task where each scan be processed in parallel.Comment: 6 pages, 1 figure, EVN 2018 symposium proceeding

    Distribution functions in percolation problems

    Get PDF
    Percolation clusters are random fractals whose geometrical and transport properties can be characterized with the help of probability distribution functions. Using renormalized field theory, we determine the asymptotic form of various of such distribution functions in the limits where certain scaling variables become small or large. Our study includes the pair-connection probability, the distributions of the fractal masses of the backbone, the red bonds and the shortest, the longest and the average self-avoiding walk between any two points on a cluster, as well as the distribution of the total resistance in the random resistor network. Our analysis draws solely on general, structural features of the underlying diagrammatic perturbation theory, and hence our main results are valid to arbitrary loop order.Comment: 15 pages, 1 figur

    Renormalized field theory of collapsing directed randomly branched polymers

    Get PDF
    We present a dynamical field theory for directed randomly branched polymers and in particular their collapse transition. We develop a phenomenological model in the form of a stochastic response functional that allows us to address several interesting problems such as the scaling behavior of the swollen phase and the collapse transition. For the swollen phase, we find that by choosing model parameters appropriately, our stochastic functional reduces to the one describing the relaxation dynamics near the Yang-Lee singularity edge. This corroborates that the scaling behavior of swollen branched polymers is governed by the Yang-Lee universality class as has been known for a long time. The main focus of our paper lies on the collapse transition of directed branched polymers. We show to arbitrary order in renormalized perturbation theory with ε\varepsilon-expansion that this transition belongs to the same universality class as directed percolation.Comment: 18 pages, 7 figure

    Finite-size scaling of directed percolation above the upper critical dimension

    Full text link
    We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the non-equilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.Comment: 4 pages, one figur
    • …
    corecore