17,382 research outputs found

    On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion

    Full text link
    It is shown by the method of renormalized field theory that in contrast to a statement based on a mathematically ill-defined invariance transformation and found in most of the recent publications on growth models with surface diffusion, the coupling constant of these models renormalizes nontrivially. This implies that the widely accepted supposedly exact scaling exponents are to be corrected. A two-loop calculation shows that the corrections are small and these exponents seem to be very good approximations.Comment: 4 pages, revtex, 2 postscript figures, to appear in Phys.Rev.Let

    Finite-size scaling of directed percolation above the upper critical dimension

    Full text link
    We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the non-equilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.Comment: 4 pages, one figur

    Prospects for high-resolution microwave spectroscopy of methanol in a Stark-deflected molecular beam

    Full text link
    Recently, the extremely sensitive torsion-rotation transitions in methanol have been used to set a tight constraint on a possible variation of the proton-to-electron mass ratio over cosmological time scales. In order to improve this constraint, laboratory data of increased accuracy will be required. Here, we explore the possibility for performing high-resolution spectroscopy on methanol in a Stark-deflected molecular beam. We have calculated the Stark shift of the lower rotational levels in the ground torsion-vibrational state of CH3OH and CD3OH molecules, and have used this to simulate trajectories through a typical molecular beam resonance setup. Furthermore, we have determined the efficiency of non-resonant multi-photon ionization of methanol molecules using a femtosecond laser pulse. The described setup is in principle suited to measure microwave transitions in CH3OH at an accuracy below 10^{-8}

    Spreading with immunization in high dimensions

    Full text link
    We investigate a model of epidemic spreading with partial immunization which is controlled by two probabilities, namely, for first infections, p0p_0, and reinfections, pp. When the two probabilities are equal, the model reduces to directed percolation, while for perfect immunization one obtains the general epidemic process belonging to the universality class of dynamical percolation. We focus on the critical behavior in the vicinity of the directed percolation point, especially in high dimensions d>2d>2. It is argued that the clusters of immune sites are compact for d4d\leq 4. This observation implies that a recently introduced scaling argument, suggesting a stretched exponential decay of the survival probability for p=pcp=p_c, p0pcp_0\ll p_c in one spatial dimension, where pcp_c denotes the critical threshold for directed percolation, should apply in any dimension d3d \leq 3 and maybe for d=4d=4 as well. Moreover, we show that the phase transition line, connecting the critical points of directed percolation and of dynamical percolation, terminates in the critical point of directed percolation with vanishing slope for d<4d<4 and with finite slope for d4d\geq 4. Furthermore, an exponent is identified for the temporal correlation length for the case of p=pcp=p_c and p0=pcϵp_0=p_c-\epsilon, ϵ1\epsilon\ll 1, which is different from the exponent ν\nu_\parallel of directed percolation. We also improve numerical estimates of several critical parameters and exponents, especially for dynamical percolation in d=4,5d=4,5.Comment: LaTeX, IOP-style, 18 pages, 9 eps figures, minor changes, additional reference

    Short-time Critical Dynamics of the 3-Dimensional Ising Model

    Full text link
    Comprehensive Monte Carlo simulations of the short-time dynamic behaviour are reported for the three-dimensional Ising model at criticality. Besides the exponent θ\theta of the critical initial increase and the dynamic exponent zz, the static critical exponents ν\nu and β\beta as well as the critical temperature are determined from the power-law scaling behaviour of observables at the beginning of the time evolution. States of very high temperature as well as of zero temperature are used as initial states for the simulations.Comment: 8 pages with 7 figure

    Renormalized field theory of collapsing directed randomly branched polymers

    Get PDF
    We present a dynamical field theory for directed randomly branched polymers and in particular their collapse transition. We develop a phenomenological model in the form of a stochastic response functional that allows us to address several interesting problems such as the scaling behavior of the swollen phase and the collapse transition. For the swollen phase, we find that by choosing model parameters appropriately, our stochastic functional reduces to the one describing the relaxation dynamics near the Yang-Lee singularity edge. This corroborates that the scaling behavior of swollen branched polymers is governed by the Yang-Lee universality class as has been known for a long time. The main focus of our paper lies on the collapse transition of directed branched polymers. We show to arbitrary order in renormalized perturbation theory with ε\varepsilon-expansion that this transition belongs to the same universality class as directed percolation.Comment: 18 pages, 7 figure

    Multifractal current distribution in random diode networks

    Full text link
    Recently it has been shown analytically that electric currents in a random diode network are distributed in a multifractal manner [O. Stenull and H. K. Janssen, Europhys. Lett. 55, 691 (2001)]. In the present work we investigate the multifractal properties of a random diode network at the critical point by numerical simulations. We analyze the currents running on a directed percolation cluster and confirm the field-theoretic predictions for the scaling behavior of moments of the current distribution. It is pointed out that a random diode network is a particularly good candidate for a possible experimental realization of directed percolation.Comment: RevTeX, 4 pages, 5 eps figure

    Forces on Bins - The Effect of Random Friction

    Full text link
    In this note we re-examine the classic Janssen theory for stresses in bins, including a randomness in the friction coefficient. The Janssen analysis relies on assumptions not met in practice; for this reason, we numerically solve the PDEs expressing balance of momentum in a bin, again including randomness in friction.Comment: 11 pages, LaTeX, with 9 figures encoded, gzippe

    Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions

    Full text link
    We develop a method of constructing percolation clusters that allows us to build very large clusters using very little computer memory by limiting the maximum number of sites for which we maintain state information to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The memory required to grow a cluster of mass s is of the order of sθs^\theta bytes where θ\theta ranges from 0.4 for 2-dimensional lattices to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate dmind_{\scriptsize min}, the exponent relating the minimum path \ell to the Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site and bond percolation, we find dmin=1.607±0.005d_{\scriptsize min}=1.607\pm 0.005 (4D) and dmin=1.812±0.006d_{\scriptsize min}=1.812\pm 0.006 (5D). In order to determine dmind_{\scriptsize min} to high precision, and without bias, it was necessary to first find precise values for the percolation threshold, pcp_c: pc=0.196889±0.000003p_c=0.196889\pm 0.000003 (4D) and pc=0.14081±0.00001p_c=0.14081\pm 0.00001 (5D) for site and pc=0.160130±0.000003p_c=0.160130\pm 0.000003 (4D) and pc=0.118174±0.000004p_c=0.118174\pm 0.000004 (5D) for bond percolation. We also calculate the Fisher exponent, τ\tau, determined in the course of calculating the values of pcp_c: τ=2.313±0.003\tau=2.313\pm 0.003 (4D) and τ=2.412±0.004\tau=2.412\pm 0.004 (5D)

    Transport on Directed Percolation Clusters

    Full text link
    We study random lattice networks consisting of resistor like and diode like bonds. For investigating the transport properties of these random resistor diode networks we introduce a field theoretic Hamiltonian amenable to renormalization group analysis. We focus on the average two-port resistance at the transition from the nonpercolating to the directed percolating phase and calculate the corresponding resistance exponent ϕ\phi to two-loop order. Moreover, we determine the backbone dimension DBD_B of directed percolation clusters to two-loop order. We obtain a scaling relation for DBD_B that is in agreement with well known scaling arguments.Comment: 4 page
    corecore