17,675 research outputs found

    Non-Abelian Giant Gravitons

    Get PDF
    We argue that the giant graviton configurations known from the literature have a complementary, microscopical description in terms of multiple gravitational waves undergoing a dielectric (or magnetic moment) effect. We present a non-Abelian effective action for these gravitational waves with dielectric couplings and show that stable dielectric solutions exist. These solutions agree in the large NN limit with the giant graviton configurations in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in Leuven, Belgium, September 200

    Dielectric branes in non-trivial backgrounds

    Full text link
    We present a procedure to evaluate the action for dielectric branes in non-trivial backgrounds. These backgrounds must be capable to be taken into a Kaluza-Klein form, with some non-zero wrapping factor. We derive the way this wrapping factor is gauged away. Examples of this are AdS_5xS^5 and AdS_3xS^3xT^4, where we perform the construction of different stable systems, which stability relies in its dielectric character.Comment: 14 pages, published versio

    Strongly anisotropic roughness in surfaces driven by an oblique particle flux

    Full text link
    Using field theoretic renormalization, an MBE-type growth process with an obliquely incident influx of atoms is examined. The projection of the beam on the substrate plane selects a "parallel" direction, with rotational invariance restricted to the transverse directions. Depending on the behavior of an effective anisotropic surface tension, a line of second order transitions is identified, as well as a line of potentially first order transitions, joined by a multicritical point. Near the second order transitions and the multicritical point, the surface roughness is strongly anisotropic. Four different roughness exponents are introduced and computed, describing the surface in different directions, in real or momentum space. The results presented challenge an earlier study of the multicritical point.Comment: 11 pages, 2 figures, REVTeX

    pp Wave Big Bangs: Matrix Strings and Shrinking Fuzzy Spheres

    Get PDF
    We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate Matrix String Theory in these backgrounds. Near the big bang ``singularity'', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times.Comment: 29 pages, ReVTeX and AMSLaTeX. 4 Figures. v2: Typo corrected and reference adde

    ECONOMIC EVALUATION OF CROPSHARE AND CASH LEASE CONTRACTS IN SOUTH DAKOTA AND NEBRASKA

    Get PDF
    Factors influencing choice of share or cash rental leases for cropland are examined using a 1996 dataset containing 1071 lease contracts in Nebraska and in South Dakota. Logistic regression results indicate tenant's age, capital position, and relationship with landlord were more important than leased land use or crop management variables.Farm Management,

    Discontinuous Percolation Transitions in Epidemic Processes, Surface Depinning in Random Media and Hamiltonian Random Graphs

    Full text link
    Discontinuous percolation transitions and the associated tricritical points are manifest in a wide range of both equilibrium and non-equilibrium cooperative phenomena. To demonstrate this, we present and relate the continuous and first order behaviors in two different classes of models: The first are generalized epidemic processes (GEP) that describe in their spatially embedded version - either on or off a regular lattice - compact or fractal cluster growth in random media at zero temperature. A random graph version of GEP is mapped onto a model previously proposed for complex social contagion. We compute detailed phase diagrams and compare our numerical results at the tricritical point in d = 3 with field theory predictions of Janssen et al. [Phys. Rev. E 70, 026114 (2004)]. The second class consists of exponential ("Hamiltonian", or formally equilibrium) random graph models and includes the Strauss and the 2-star model, where 'chemical potentials' control the densities of links, triangles or 2-stars. When the chemical potentials in either graph model are O(logN), the percolation transition can coincide with a first order phase transition in the density of links, making the former also discontinuous. Hysteresis loops can then be of mixed order, with second order behavior for decreasing link fugacity, and a jump (first order) when it increases

    Generalized Dynamic Scaling for Critical Relaxations

    Full text link
    The dynamic relaxation process for the two dimensional Potts model at criticality starting from an initial state with very high temperature and arbitrary magnetization is investigated with Monte Carlo methods. The results show that there exists universal scaling behaviour even in the short-time regime of the dynamic evolution. In order to describe the dependence of the scaling behaviour on the initial magnetization, a critical characteristic function is introduced.Comment: Latex, 8 pages, 3 figures, to appear in Phys. Rev. Let

    Drived diffusion of vector fields

    Get PDF
    A model for the diffusion of vector fields driven by external forces is proposed. Using the renormalization group and the ϵ\epsilon-expansion, the dynamical critical properties of the model with gaussian noise for dimensions below the critical dimension are investigated and new transport universality classes are obtained.Comment: 11 pages, title changed, anisotropic diffusion further discussed and emphasize

    Renormalized field theory of collapsing directed randomly branched polymers

    Get PDF
    We present a dynamical field theory for directed randomly branched polymers and in particular their collapse transition. We develop a phenomenological model in the form of a stochastic response functional that allows us to address several interesting problems such as the scaling behavior of the swollen phase and the collapse transition. For the swollen phase, we find that by choosing model parameters appropriately, our stochastic functional reduces to the one describing the relaxation dynamics near the Yang-Lee singularity edge. This corroborates that the scaling behavior of swollen branched polymers is governed by the Yang-Lee universality class as has been known for a long time. The main focus of our paper lies on the collapse transition of directed branched polymers. We show to arbitrary order in renormalized perturbation theory with ε\varepsilon-expansion that this transition belongs to the same universality class as directed percolation.Comment: 18 pages, 7 figure

    Very Long Baseline Interferometry Measured Proper Motion and Parallax of the γ\gamma-ray Millisecond Pulsar PSR J0218+4232

    Full text link
    PSR J0218++4232 is a millisecond pulsar (MSP) with a flux density \sim 0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ\gamma-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ\gamma-ray luminosity. We achieved a detection of signal-to-noise ratio S/N > 37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μαcosδ=5.35±0.05\mu_{\alpha}\cos\delta=5.35\pm0.05 mas yr1^{-1} and μδ=3.74±0.12\mu_{\delta}=-3.74\pm 0.12 mas yr1^{-1}, and a parallax of π=0.16±0.09\pi=0.16\pm0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.32.3+8.0d=6.3^{+8.0}_{-2.3} kpc, with a corresponding 3σ3\sigma lower-limit of d=2.3d=2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218++4232 is the most energetic γ\gamma-ray MSP known to date. The luminosity based on even our 3σ\sigma lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.Comment: 5 pages, 2 figures, 2 tables; published in the Astrophysical Journal Letters on 2014 Feb. 1
    corecore