7 research outputs found
Skeletal <sup>18</sup>F-PSMA-1007 uptake in prostate cancer patients
Background/objectives: Accurate and uniform interpretation and reporting of metastatic prostate cancer (PCa) lesions on prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) are indispensable. 18F-PSMA-1007 is increasingly used because of its favorable imaging characteristics. However, increased non-specific skeletal uptake may be an important pitfall of this radioligand. Therefore, we aimed to assess the interobserver variation in reporting skeletal 18F-PSMA-1007 uptake on PET/CT.Design/methods: In total, 33 18F-PSMA-1007 PET/CT scans of 21 patients with primary PCa and 12 patients with biochemical recurrence were included, and a total of 85 skeletal lesions were evaluated by three independent observers. The primary endpoint was the interobserver variability of the likelihood of malignancy of the skeletal lesions on both patient and lesion level (kappa analysis).Results: Observers qualified most lesions as not malignant (81–91%) and the overall mean interobserver agreement was moderate on both patient (κ: 0.54) and lesion level (κ: 0.55). In 52 lesions without corresponding CT substrate, the rating resulted in not malignant in 95–100%. Availability of additional imaging (60% of lesions) did not improve interobserver agreement (κ: 0.39 on lesion level) and resulted in unchanged rating for all observers in 78%.Conclusion: This interobserver analysis of skeletal 18F-PSMA-1007 uptake resulted in moderate agreement, in line with rates reported in literature. Importantly, the presence of non-specific skeletal uptake without CT substrate, as a potential shortcoming of 18F-PSMA-1007, did not impair interobserver agreement.</p
Target coverage and organs at risk dose in hypofractionated salvage radiotherapy after prostatectomy
Background and purpose: Introducing moderately hypofractionated salvage radiotherapy (SRT) following prostatectomy obligates investigation of its effects on clinical target volume (CTV) coverage and organ-at-risk (OAR) doses. This study assessed interfractional volume and dose changes in OARs and CTV in moderately hypofractionated SRT and evaluated the 8-mm planning target volume (PTV) margin. Materials and methods: Twenty patients from the PERYTON-trial were included; 10 received conventional SRT (35 × 2 Gy) and 10 hypofractionated SRT (20 × 3 Gy). OARs were delineated on 539 pre-treatment Cone Beam CT (CBCT) scans to compare interfractional OAR volume changes. CTVs for the hypofractionated group were delineated on 199 CBCTs. Dose distributions with 4 and 6 mm PTV margins were generated using voxel-wise minimum robustness evaluation of the original 8-mm PTV plan, and dose changes were assessed. Results: Median volume changes for bladder and rectum were −26 % and −10 %, respectively. OAR volume changes were not significantly different between the two treatment schedules. The 8-mm PTV margin ensured optimal coverage for prostate bed and vesicle bed CTV (V95 = 100 % in >97 % fractions). However, bladder V60 <25 % was not achieved in 5 % of fractions, and rectum V60 <5 % was unmet in 33 % of fractions. A 6-mm PTV margin resulted in CTV V95 = 100 % in 92 % of fractions for prostate bed, and in 86 % for vesicle bed CTV. Conclusions: Moderately hypofractionated SRT yielded comparable OAR volume changes to conventionally fractionated SRT. Interfractional changes remained acceptable with a PTV margin of 6 mm for prostate bed and 8 mm for vesicle bed
Simple immobilization for stereotactic radiotherapy aimed at pelvic metastases
Stereotactic body radiotherapy (SBRT) is increasingly applied for pelvic oligometastases of prostate cancer, and currently no simple immobilization method is available for cone beam computed tomography (CBCT)-guided treatment. We assessed patient set-up and intrafraction motion using simple immobilization during CBCT-guided pelvic SBRT. Forty patients were immobilized with basic arm- head- and knee support and either a thermoplastic cushion or a foam cushion. Analysis of 454 CBCTs showed mean intrafraction translation <3.0 mm in 94% of fractions and mean intrafraction rotation <1.5° in 95% of fractions. Therefore, simple immobilization ensured stable patient positioning during CBCT-guided pelvic SBRT
Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Based Clinical Target Volume Delineation Guideline for Postprostatectomy Salvage Radiation Therapy:The PERYTON Guideline
PURPOSE: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) scan is the standard imaging procedure for biochemical recurrent prostate cancer postprostatectomy because of its high detection rate at low serum prostate-specific antigen levels. However, existing guidelines for clinical target volume (CTV) in prostate bed salvage external beam radiation therapy (sEBRT) are primarily based on experience-based clinical consensus and have been validated using conventional imaging modalities. Therefore, this study aimed to optimize CTV definition in sEBRT by using PSMA PET/CT-detected local recurrences (LRs).METHODS AND MATERIALS: Patients with suspected LR on PSMA PET/CT postprostatectomy were retrospectively enrolled in 9 Dutch centers. Anonymized scans were centrally reviewed by an expert nuclear medicine physician. Each boundary of the CTV guideline from the Groupe Francophone de Radiothérapie en Urologie (GFRU) was evaluated and adapted to improve the accuracy and coverage of the area at risk of LR (CTV) on PSMA PET/CT. The proposed CTV adaptation was discussed with the radiation oncologists of the participating centers, and final consensus was reached. To assess reproducibility, the participating centers were asked to delineate 3 new cases according to the new PERYTON-CTV, and the submitted contours were evaluated using the Dice similarity coefficient (DSC).RESULTS: After central review, 93 LRs were identified on 83 PSMA PET/CTs. The proposed CTV definition improved the coverage of PSMA PET/CT-detected LRs from 67% to 96% compared with the GFRU-CTV, while reducing the GFRU-CTV by 25%. The new CTV was highly reproducible, with a mean DSC of 0.82 (range, 0.81-0.83).CONCLUSIONS:This study contributes to the optimization of CTV definition in postprostatectomy sEBRT by using the pattern of LR detected on PSMA PET/CT. The PERYTON-CTV is highly reproducible across the participating centers and ensures coverage of 96% LRs while reducing the GFRU-CTV by 25%.</p
Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Based Clinical Target Volume Delineation Guideline for Postprostatectomy Salvage Radiation Therapy:The PERYTON Guideline
PURPOSE: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) scan is the standard imaging procedure for biochemical recurrent prostate cancer postprostatectomy because of its high detection rate at low serum prostate-specific antigen levels. However, existing guidelines for clinical target volume (CTV) in prostate bed salvage external beam radiation therapy (sEBRT) are primarily based on experience-based clinical consensus and have been validated using conventional imaging modalities. Therefore, this study aimed to optimize CTV definition in sEBRT by using PSMA PET/CT-detected local recurrences (LRs).METHODS AND MATERIALS: Patients with suspected LR on PSMA PET/CT postprostatectomy were retrospectively enrolled in 9 Dutch centers. Anonymized scans were centrally reviewed by an expert nuclear medicine physician. Each boundary of the CTV guideline from the Groupe Francophone de Radiothérapie en Urologie (GFRU) was evaluated and adapted to improve the accuracy and coverage of the area at risk of LR (CTV) on PSMA PET/CT. The proposed CTV adaptation was discussed with the radiation oncologists of the participating centers, and final consensus was reached. To assess reproducibility, the participating centers were asked to delineate 3 new cases according to the new PERYTON-CTV, and the submitted contours were evaluated using the Dice similarity coefficient (DSC).RESULTS: After central review, 93 LRs were identified on 83 PSMA PET/CTs. The proposed CTV definition improved the coverage of PSMA PET/CT-detected LRs from 67% to 96% compared with the GFRU-CTV, while reducing the GFRU-CTV by 25%. The new CTV was highly reproducible, with a mean DSC of 0.82 (range, 0.81-0.83).CONCLUSIONS:This study contributes to the optimization of CTV definition in postprostatectomy sEBRT by using the pattern of LR detected on PSMA PET/CT. The PERYTON-CTV is highly reproducible across the participating centers and ensures coverage of 96% LRs while reducing the GFRU-CTV by 25%.</p