4,497 research outputs found

    Fully Analyzing an Algebraic Polya Urn Model

    Get PDF
    This paper introduces and analyzes a particular class of Polya urns: balls are of two colors, can only be added (the urns are said to be additive) and at every step the same constant number of balls is added, thus only the color compositions varies (the urns are said to be balanced). These properties make this class of urns ideally suited for analysis from an "analytic combinatorics" point-of-view, following in the footsteps of Flajolet-Dumas-Puyhaubert, 2006. Through an algebraic generating function to which we apply a multiple coalescing saddle-point method, we are able to give precise asymptotic results for the probability distribution of the composition of the urn, as well as local limit law and large deviation bounds.Comment: LATIN 2012, Arequipa : Peru (2012

    Flows on Graphs with Random Capacities

    Full text link
    We investigate flows on graphs whose links have random capacities. For binary trees we derive the probability distribution for the maximal flow from the root to a leaf, and show that for infinite trees it vanishes beyond a certain threshold that depends on the distribution of capacities. We then examine the maximal total flux from the root to the leaves. Our methods generalize to simple graphs with loops, e.g., to hierarchical lattices and to complete graphs.Comment: 8 pages, 6 figure

    An Interesting Class of Operators with unusual Schatten-von Neumann behavior

    Full text link
    We consider the class of integral operators Q_\f on L2(R+)L^2(\R_+) of the form (Q_\f f)(x)=\int_0^\be\f (\max\{x,y\})f(y)dy. We discuss necessary and sufficient conditions on ϕ\phi to insure that QϕQ_{\phi} is bounded, compact, or in the Schatten-von Neumann class \bS_p, 1<p<1<p<\infty. We also give necessary and sufficient conditions for QϕQ_{\phi} to be a finite rank operator. However, there is a kind of cut-off at p=1p=1, and for membership in \bS_{p}, 0<p10<p\leq1, the situation is more complicated. Although we give various necessary conditions and sufficient conditions relating to Q_{\phi}\in\bS_{p} in that range, we do not have necessary and sufficient conditions. In the most important case p=1p=1, we have a necessary condition and a sufficient condition, using L1L^1 and L2L^2 modulus of continuity, respectively, with a rather small gap in between. A second cut-off occurs at p=1/2p=1/2: if \f is sufficiently smooth and decays reasonably fast, then \qf belongs to the weak Schatten-von Neumann class \wS{1/2}, but never to \bS_{1/2} unless \f=0. We also obtain results for related families of operators acting on L2(R)L^2(\R) and 2(Z)\ell^2(\Z). We further study operations acting on bounded linear operators on L2(R+)L^{2}(\R^{+}) related to the class of operators Q_\f. In particular we study Schur multipliers given by functions of the form ϕ(max{x,y})\phi(\max\{x,y\}) and we study properties of the averaging projection (Hilbert-Schmidt projection) onto the operators of the form Q_\f.Comment: 87 page

    Astronautics and aeronautics, 1985: A chronology

    Get PDF
    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media

    An analysis of local versus open-market purchasing of school supplies and equipment

    Full text link
    Thesis (M.B.A)--Boston Universit

    Upper tails for counting objects in randomly induced subhypergraphs and rooted random graphs

    Full text link
    General upper tail estimates are given for counting edges in a random induced subhypergraph of a fixed hypergraph H, with an easy proof by estimating the moments. As an application we consider the numbers of arithmetic progressions and Schur triples in random subsets of integers. In the second part of the paper we return to the subgraph counts in random graphs and provide upper tail estimates in the rooted case.Comment: 15 page

    Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics

    Get PDF
    Simple heuristics often show a remarkable performance in practice for optimization problems. Worst-case analysis often falls short of explaining this performance. Because of this, "beyond worst-case analysis" of algorithms has recently gained a lot of attention, including probabilistic analysis of algorithms. The instances of many optimization problems are essentially a discrete metric space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been conducted on instances drawn from Euclidean space, which provides a structure that is usually heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little work has been done on metric instances drawn from other, more realistic, distributions. Some initial results have been obtained by Bringmann et al. (Algorithmica, 2013), who have used random shortest path metrics on complete graphs to analyze heuristics. The goal of this paper is to generalize these findings to non-complete graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path metric is constructed by drawing independent random edge weights for each edge in the graph and setting the distance between every pair of vertices to the length of a shortest path between them with respect to the drawn weights. For such instances, we prove that the greedy heuristic for the minimum distance maximum matching problem, the nearest neighbor and insertion heuristics for the traveling salesman problem, and a trivial heuristic for the kk-median problem all achieve a constant expected approximation ratio. Additionally, we show a polynomial upper bound for the expected number of iterations of the 2-opt heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201

    Monotone graph limits and quasimonotone graphs

    Full text link
    The recent theory of graph limits gives a powerful framework for understanding the properties of suitable (convergent) sequences (Gn)(G_n) of graphs in terms of a limiting object which may be represented by a symmetric function WW on [0,1][0,1], i.e., a kernel or graphon. In this context it is natural to wish to relate specific properties of the sequence to specific properties of the kernel. Here we show that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a `quasi-monotonicity' property defined by a certain functional tending to zero. As a tool we prove an inequality relating the cut and L1L^1 norms of kernels of the form W1W2W_1-W_2 with W1W_1 and W2W_2 monotone that may be of interest in its own right; no such inequality holds for general kernels.Comment: 38 page

    Searching for young Jupiter analogs around AP Col: L-band high-contrast imaging of the closest pre-main sequence star

    Get PDF
    The nearby M-dwarf AP Col was recently identified by Riedel et al. 2011 as a pre-main sequence star (age 12 - 50 Myr) situated only 8.4 pc from the Sun. The combination of its youth, distance, and intrinsically low luminosity make it an ideal target to search for extrasolar planets using direct imaging. We report deep adaptive optics observations of AP Col taken with VLT/NACO and Keck/NIRC2 in the L-band. Using aggressive speckle suppression and background subtraction techniques, we are able to rule out companions with mass m >= 0.5 - 1M_Jup for projected separations a>4.5 AU, and m >= 2 M_Jup for projected separations as small as 3 AU, assuming an age of 40 Myr using the COND theoretical evolutionary models. Using a different set of models the mass limits increase by a factor of ~2. The observations presented here are the deepest mass-sensitivity limits yet achieved within 20 AU on a star with direct imaging. While Doppler radial velocity surveys have shown that Jovian bodies with close-in orbits are rare around M-dwarfs, gravitational microlensing studies predict that ~17% of these stars host massive planets with orbital separations of 1-10 AU. Sensitive high-contrast imaging observations, like those presented here, will help to validate results from complementary detection techniques by determining the frequency of gas giant planets on wide orbits around M-dwarfs.Comment: Accepted for publication in ApJ, 6 pages text ApJ style (incl. references), 4 figures, 1 tabl
    corecore