23 research outputs found

    A Potent and Selective S1P1 Antagonist with Efficacy in Experimental Autoimmune Encephalomyelitis

    Get PDF
    SummaryLymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P1), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P1 receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P1 antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing. NIBR-0213 showed comparable therapeutic efficacy to fingolimod in experimental autoimmune encephalomyelitis (EAE), a model of human MS. These data provide convincing evidence that S1P1 antagonists are effective in EAE. In addition, the profile of NIBR-0213 makes it an attractive candidate to further study the consequences of S1P1 receptor antagonism and to differentiate the effects from those of S1P1 agonists

    A cassette-dosing approach for improvement of oral bioavailability of dual TACE/MMP inhibitors.

    No full text
    The structural features contributing to the different pharmacokinetic properties of the TACE/MMP inhibitors TNF484 and Trocade were analyzed using an in vivo cassette-dosing approach in rats. This enabled us to identify a new lead compound with excellent pharmacokinetic properties, but weaker activity on the biological targets. Directed structural modifications maintained oral bioavailability and restored biological activity, leading to a novel compound almost equipotent to TNF484 in vivo, but with a more than tenfold higher oral bioavailability

    Small Aircraft Concept for Regional On-Demand Air Mobility

    No full text

    Small Aircraft Concept for Regional On-Demand Air Mobility

    No full text

    An oral S1P1 antagonist prodrug with efficacy in vivo: discovery, synthesis and evaluation

    No full text
    A prodrug approach to optimize the oral exposure of an S1P1 antagonist for chronic efficacy studies led to the discovery of (S)-2-{[3'-(4-Chloro-2,5-dimethyl-benzenesulfonylamino)-3,5-dimethyl-biphenyl-4-carbonyl]-methyl-amino}-4-dimethylamino-butyric acid methyl ester (BVM924). Due to the steric hindrance and the partial double bond character of the amide group and the resulting large rotational barrier around the amide bond two conformers of (BVM924) can be detected in solution and their equilibration was investigated by UPLC and 1H NMR. Methyl ester prodrug (BVM924) is hydrolyzed in vivo to the corresponding carboxylic acid (BVS819), a potent and selective S1P1 antagonist. Oral administration of the prodrug (BVM924) induces sustained peripheral lymphocyte depletion in rats. In a rat cardiac transplantation model co-administration of a nonefficacious dose of prodrug (BVM924) with a nonefficacious dose of sotrastaurin (AEB071), a protein kinase C inhibitor, or everolimus (RAD001), an mTOR inhibitor, effectively prolonged the survival time of rat cardiac allografts. This demonstrates that clinically useful immunomodulation mediated by the S1P1 receptor can be achieved with an S1P1 antagonist generated in vivo after oral administration of its prodrug

    Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK.

    No full text
    The design, synthesis, and the biological evaluation of 2-benzamido-pyrimidines as novel IKK inhibitors are described. By optimization of the lead compound 3, compounds 16 and 24 are identified as good inhibitors of IKK2 with IC(50) values of 40 and 25 nM, respectively. Compound 16 also demonstrated significant in vivo activity in an acute model of cytokine release

    Design of potent and selective covalent inhibitors of Bruton’s Tyrosine Kinase targeting an inactive conformation

    No full text
    Bruton’s tyrosine kinase (BTK) is a member of the TEC kinase family and is selectively expressed in a subset of immune cells. It is a key regulator of antigen receptor signaling in B cells and of Fc receptor signaling in mast cells and macrophages. A BTK inhibitor will likely have a positive impact on autoimmune diseases which are caused by autoreactive B cells and immune-complex driven inflammation. We report the design, optimization, and characterization of potent and selective covalent BTK inhibitors. Starting from the selective reversible inhibitor 3 binding to an inactive conformation of BTK, we designed covalent irreversible compounds by attaching an electrophilic warhead to reach Cys481. The first prototype 4 covalently modified BTK and showed an excellent kinase selectivity including several Cys-containing kinases, validating the design concept. In addition, this compound blocked FcγR-mediated hypersensitivity in vivo. Optimization of whole blood potency and metabolic stability resulted in compounds such as 8, which maintained the excellent kinase selectivity and showed improved BTK occupancy in vivo

    Discovery of Potent, Orally Bioavailable, Tricyclic NLRP3 Inhibitors.

    No full text
    NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1β and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer. In this publication, we describe the discovery of a novel, tricyclic, NLRP3-binding scaffold by high-throughput screening. The hit (1) could be optimized into an advanced compound NP3-562 demonstrating excellent potency in human whole blood and full inhibition of IL-1β release in a mouse acute peritonitis model at 30 mg/kg po dose. An X-ray structure of NP3-562 bound to the NLRP3 NACHT domain revealed a unique binding mode as compared to the known sulfonylurea-based inhibitors. In addition, NP3-562 shows also a good overall development profile

    Discovery And Optimization of Novel SUCNR1 Inhibitors: Design of Zwitterionic Derivatives with Salt-Bridge for Improvement of Oral Exposure

    No full text
    G-protein-coupled receptor SUCNR1 (succinate receptor 1 or GPR91) senses the citric cycle intermediate succinate and is implicated in various pathological conditions such as rheumatoid arthritis, liver fibrosis, or obesity. Here, we describe a novel SUCNR1 antagonist scaffold discovered by high-throughput screening. The poor permeation and absorption properties of the most potent compounds, which were zwitterionic in nature, could be improved by the formation of an internal salt bridge, which helped in shielding the two opposite charges and thus also the high polarity of zwitterions with separated charges. The designed compounds containing such a salt bridge reached high oral bioavailability and oral exposure. We believe that this principle could find a broad interest in the medicinal chemistry field as it can be useful not only for the modulation of properties in zwitterionic compounds but also in acidic or basic compounds with poor permeation
    corecore