3 research outputs found

    Distinct Platelet Ribonucleic Acid Signatures in Patients with Pulmonary Hypertension

    No full text
    Rationale: Pulmonary hypertension encompasses progressive disorders leading to right ventricular dysfunction and early death. Late detection is an important cause of poor clinical outcomes. However, biomarkers that accurately predict the presence of pulmonary hypertension are currently lacking. Objectives: In this study, we provide evidence that blood platelets contain a distinctive ribonucleic acid (RNA) profile that may be exploited for the detection of pulmonary hypertension. Methods: Blood platelet RNA was isolated prospectively from 177 prevalent patients with different subtypes of pulmonary hypertension as well as 195 control subjects clinically not suspected of pulmonary hypertension. Sequencing libraries were created using SMARTer (Switching Mechanism at 5' end of RNA Template) copy desoxyribonucleic acid amplification and sequenced on the Illumina High Throughput Sequencing platform. RNA-sequencing reads were mapped to the human reference genome, and intron-spanning spliced RNA reads were selected. Differential spliced RNA panels were calculated by analysis of variance statistics. A particle swarm optimization-enhanced classification algorithm was built employing a development (n = 213 samples) and independent validation series (n = 159 samples). Results: We detected a total of 4,014 different RNAs in blood platelets from patients with pulmonary hypertension (n = 177) and asymptomatic control subjects (n = 195). Gene ontology analysis revealed enhanced RNA concentrations for genes related to RNA processing, translation, and mitochondrial function. A particle swarm optimization-selected RNA panel of 408 distinctive differentially spliced RNAs mediated detection of pulmonary hypertension with 93% sensitivity, 62% specificity, 77% accuracy, 0.89 (95% confidence interval, 0.83-0.93) area under the curve, and a negative predictive value of 91% in the independent validation series. The prediction score was independent of age, sex, smoking, pulmonary hypertension subtype, and the use of pulmonary hypertension-specific medication or anticoagulants. Conclusions: A platelet RNA panel may accurately discriminate patients with pulmonary hypertension from asymptomatic control subjects. In the light of current diagnostic delays, this study is the starting point for further development and evaluation of a platelet RNA-based blood test to ultimately improve early diagnosis and clinical outcomes in patients with pulmonary hypertension

    First Genotype-Phenotype Study in TBX4 Syndrome: Gain-of-Function Mutations Causative for Lung Disease.

    Get PDF
    Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains
    corecore