528 research outputs found

    Optical phase conjugation in fiber-optic transmission systems

    Get PDF
    As the data rate of long-haul transmission links is increased, the design and realization of the transmission link becomes more difficult. As a result, more sophisticated methods are required to improve the transmission quality. The robustness of a transmission link can be increased and its structure greatly simplified by the use of mid-link optical phase conjugation (OPC). OPC is a promising technology to compensate for deterministic, phase related impairments (i.e. the Kerr effect and chromatic dispersion) in long-haul transmission systems. This thesis assesses the regenerative capabilities of OPC for the compensation of distortions that occur in modern transmission systems. The focus of the research is on transmission systems where OPC is employed to compensate for both chromatic dispersion and nonlinear impairments. The dispersion map (i.e. the dispersion as a function of the transmission distance) of such a transmission system is completely different from that of a conventional transmission system. The accumulated dispersion along the link of an OPCbased transmission system is significantly higher than that of a conventional transmission system. We investigated the influence of the dispersion map of OPC on nonlinear impairments using the non return-to-zero amplitude-shift-keying (NRZ-ASK) modulation format. As a result, it is shown that the peak powers that occur in the OPC transmission system are at a 10-Gbit/s/channel data rate significantly higher than the peak powers that occur in a conventional transmission system. The higher peak powers in the OPC based transmission system lead to an increased self-phase modulation (SPM) penalty. Through phase conjugation most of the SPM impairments are compensated for. However, when multiple wavelength division multiplexed (WDM) channels at narrow channel spacing are used for transmission, cross-phase modulation (XPM) is the dominating transmission impairment. Although XPM is principally a deterministic distortion, it must be treated as non-deterministic due to the dispersion of the transmission link. With simulations and experiments we show that because of this, the XPM compensation through OPC is marginal. At a 40 Gbit/s data rate, the peak powers that occur in the OPC-based transmission system are similar to those that occur in the conventional transmission system. In 40 Gbit/s WDM transmission systems the influence of XPM is relatively low. These transmission systems are rather limited by intra-channel nonlinear impairments such as SPM, intrachannel XPM (IXPM) and intrachannel FWM (IFWM). We show experimentally that in this case, the performance of the OPC transmission system is better than that of the conventional transmission system. When OPC is used to compensate for the chromatic dispersion, the OPC must be placed in the middle of the transmission link. This technique is often referred to as "midlink OPC". However, in some transmission links it is not possible to place the OPC exactly in the middle. Therefore, several configurations with a transmission length of 700 km to 900 km were assessed where the OPC was placed 100 km from the middle of the transmission link. In this experiment practically no bit-error ratio (BER) degradation was observed in the off-center configuration. Recently, strong interest has been shown in phase-shift keying modulation (PSK) formats such as differential phase-shift-keying (DPSK). DPSK’s main advantages over ASK are that it is more robust to narrowband optical filtering and has a 3 dB higher sensitivity in combination with balanced detection. However, unlike ASK signals PSK signals can be distorted by nonlinear phase noise (NPN). For long-haul transmission systems, the impact of NPN is so severe that the performance of DPSK is in some cases even worse than that of ASK. The impact of nonlinear phase noise is studied for 10.7-Gbit/s DPSK in an 800-km transmission link. In this experiment it is shown that impairments due to nonlinear phase noise can be significantly reduced using optical phase conjugation. The dependence of the location of the OPC within the transmission link is assessed as well. Allowing a penalty of 1 decade in BER from the optimum, the OPC-unit can be varied over a wide range, from nearly 1/3 to 2/3 of the transmission link. The combination of mid-link OPC is assessed with 21.4-Gbit/s return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) in an ultra long-haul transmission experiment. Error-free transmission after FEC is realized over 10,200 km for all 22 WDM channels. In this experiment, a single OPC-unit is used in the middle of the link to compensate for an accumulated chromatic dispersion of over 160,000 ps/nm. Along the transmission line, the dispersion accumulates in this experiment to more than 80,000 ps/nm. This is significantly higher than the maximum accumulated dispersion in the conventional transmission system (approximately 3,000 ps/nm). The high accumulated dispersion results in an extreme overlap of the pulses along the transmission line. With this experiment we show that despite the high dispersion, the feasible transmission distance of the OPC based transmission system is 44% greater than that obtained in the conventional transmission system. By doubling the data rate and keeping the 50-GHz channel spacing, a 0.8-bit/s/Hz spectral efficient WDM transmission system is realized. At 42.8-Gbit/s RZ-DQPSK, transmission over 5,000 km was realized with mid-link OPC. Compared to the feasible transmission distance obtained at 21.4-Gbit/s, the feasible transmission distance is reduced by about 50%. This reduction of transmission distance with 50% corresponds to the 3-dB OSNR penalty that is present between 21.4-Gbit/s and 42.8-Gbit/s RZ-DQPSK in the back-toback configuration. For the conventional transmission system, a greater reduction in the feasible transmission distance (factor of 2.4) is measured due to increased penalties that result from a combination of self phase modulation and nonlinear phase noise. Comparing the feasible transmission distance of the OPC to the conventional transmission system an improvement of 60% is observed in this experiment

    Is Twitter a Public Sphere for Online Conflicts? A Cross-Ideological and Cross-Hierarchical Look

    Full text link
    The rise in popularity of Twitter has led to a debate on its impact on public opinions. The optimists foresee an increase in online participation and democratization due to social media's personal and interactive nature. Cyber-pessimists, on the other hand, explain how social media can lead to selective exposure and can be used as a disguise for those in power to disseminate biased information. To investigate this debate empirically, we evaluate Twitter as a public sphere using four metrics: equality, diversity, reciprocity and quality. Using these measurements, we analyze the communication patterns between individuals of different hierarchical levels and ideologies. We do this within the context of three diverse conflicts: Israel-Palestine, US Democrats-Republicans, and FC Barcelona-Real Madrid. In all cases, we collect data around a central pair of Twitter accounts representing the two main parties. Our results show in a quantitative manner that Twitter is not an ideal public sphere for democratic conversations and that hierarchical effects are part of the reason why it is not.Comment: To appear in the 6th International Conference on Social Informatics (SocInfo 2014), Barcelon

    Tunable all-fibre delay line filter for residual dispersion compensation in 40 Gbit/s systems

    Get PDF
    A novel all-fibre tunable delay-line filter, with a simple structure based on two 3Ă—3 fibre couplers and only one phase shifter is utilised for residual dispersion compensation in a 40 Gbit/s optical transmission system. In this experiment the dispersion tolerance of the receiver was successfully enhanced by 100 ps/nm

    Defining Medical Futility in Ethics, Law and Clinical Practice: An Exercise in Futility?

    Get PDF
    The debate as to the meaning of medical futility and what physicians should do in clinical practice dates back to the time of the writings of Hippocrates and Plato where it was said, "To attempt futile treatment is to display an ignorance that is allied to madness". In simpler times assertions regarding the obvious were sufficient to indicate what was thought "fitting" as a medical practitioner. In recent times, however, modern technology, professional values and power, patient autonomy, limited health care resources and societal expectations, make for a much more potent and potentially explosive mixture. In this article we argue that futility is a problem that will not go away, both because of increased health expectations and emerging technologies that keep making possible what was previously impossible. The problem of definition and its ramifications in terms of institutional policies is one in which the legal profession and its process (which often represents and reflects societal values) has a key role to play by way of critical reflection and appraisal

    10 Gbit/s based NRZ DWDM systems using polarisation switching in single wavelength channel

    Get PDF
    It is experimentally demonstrated that the nonlinear tolerance of 10 Gbit/s/ch NRZ based DWDM systems over 1500 km standard singlemode fibre can be significantly improved through the use of orthogonal polarisation switching between adjacent bits in a single wavelength channel

    Experimental investigation of self coherent optical OFDM systems using fabry-perot filters for carrier extraction

    Get PDF
    We experimentally demonstrate self coherent optical OFDM transmission with IQ demultiplexing employing a Fabry-Perot-tunable filter for the extraction of the optical carrier. The performance is investigated and compared to a conventional CO-OFDM

    Low computational complexity mode division multiplexed OFDM transmission over 130 km of few mode fiber

    No full text
    We demonstrate 337.5-Gb/s MDM-8QAM-OFDM transmission over 130 km of FMF. This confirms that OFDM can significantly reduce the required DSP complexity to compensate for differential mode delay, a key step towards real-time MDM transmission

    11 x 224 Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-Ghz channel spacing

    Get PDF
    We demonstrate the generation and transmission of eleven channels with 224-Gb/s polarization-multiplexed, return to zero, 16-level quadrature amplitude modulation (POLMUX-RZ-16QAM) over 670 km of standard single mode fiber (SSMF) with 50-GHz channel spacing and a spectral efficiency of 4.2 b/s/Hz. We report a penalty of around 4.3 dB in the performance at back-to-back in comparison to the theoretical limits, and a margin of 1 dB in Q-factor below the forward error correction (FEC) limit (assumed to be at a bit error rate of 3.8x10-3) after transmission over 670 km of SSMF

    16x40 Gb/s over 800km of SSMF using mid-link spectral inversion

    Get PDF
    We demonstrate the feasibility of a cost-effective 640 Gb/s (16Ă—40 Gb/s) wavelength-division-multiplexed (WDM) transmission system over 800 km of conventional standard single-mode fiber (SSMF) without using in-line dispersion management. Instead for chromatic-dispersion compensation, a Magnesium-oxide-doped periodically poled lithium niobate (MgO : PPLN)-based polarization-diverse subsystem is used to phase conjugate all 16 channels. The transmission line uses all erbium-doped fiber amplifiers and has an amplifier spacing of 100 km. All channels launched were copolarized. To the best of our knowledge, this is the first WDM transmission experiment with a channel data rate of 40 Gb/s using a PPLN as chromatic-dispersion compensator

    Optimization of five ultra-high vacuum compatible voice coil actuator topologies

    Get PDF
    In this paper, a coupled electro-thermal optimization of five ultra-high vacuum compatible voice coil actuators (VCAs) is performed. Based on the resulting force range and steady state coil temperature, a prototype VCA is manufactured. Its performance is measured on a test setup
    • …
    corecore