11,329 research outputs found

    Effects of liquid and vapor cesium on structural materials

    Get PDF
    Literature survey on corrosive effects of liquid and vapor cesium on structural materials, and compatibility of cesium as working fluid for Rankine cycle space power plan

    The electron spectra in the synchrotron nebula of the supernova remnant G 29.7-0.3

    Get PDF
    EXOSAT results obtained with the imaging instrument (CMA) and the medium energy proportional counters (ME) are discussed. Assuming that the featureless power-law spectrum obtained in the 2 to 10 keV range is synchrotron radiation from relativistic electrons, one derives constraints on magnetic field strength and age of the nebula. The energy spectra of the electrons responsible for the emission in the radio and X-ray ranges are discussed. The great similarity of the physical properties of G 29.7-0.3 and of three synchrotron nebulae containing a compact object observed to pulse in X-rays makes G 29.7 - 0.3 a very promising candidate for further search for pulsed emission. Further observations at infrared wavelengths might reveal the break(s) in the emitted spectrum expected from the radio and X-ray power-law indices and give us more information on the production of the electron populations responsible for the emission of the nebula

    Two-Dimensional Spectroscopy of Extended Molecular Systems: Applications to Energy Transport and Relaxation in an α-Helix

    Get PDF
    A simulation study of the coupled dynamics of amide I and amide II vibrations in an α-helix dissolved in water shows that two-dimensional (2D) infrared spectroscopy may be used to disentangle the energy transport along the helix through each of these modes from the energy relaxation between them. Time scales for both types of processes are obtained. Using polarization-dependent 2D spectroscopy is an important ingredient in the method we propose. The method may also be applied to other two-band systems, both in the infrared (collective vibrations) and the visible (excitons) parts of the spectrum.

    Domain-wall fermions with U(1)U(1) dynamical gauge fields

    Get PDF
    We have carried out a numerical simulation of a domain-wall model in (2+1)(2+1)-dimensions, in the presence of a dynamical gauge field only in an extra dimension, corresponding to the weak coupling limit of a ( 2-dimensional ) physical gauge coupling. Using a quenched approximation we have investigated this model at βs(=1/gs2)=\beta_{s} ( = 1 / g^{2}_{s} ) = 0.5 ( ``symmetric'' phase), 1.0, and 5.0 (``broken'' phase), where gsg_s is the gauge coupling constant of the extra dimension. We have found that there exists a critical value of a domain-wall mass m0cm_{0}^{c} which separates a region with a fermionic zero mode on the domain-wall from the one without it, in both symmetric and broken phases. This result suggests that the domain-wall method may work for the construction of lattice chiral gauge theories.Comment: 27 pages (11 figures), latex (epsf style-file needed

    Network theory approach for data evaluation in the dynamic force spectroscopy of biomolecular interactions

    Get PDF
    Investigations of molecular bonds between single molecules and molecular complexes by the dynamic force spectroscopy are subject to large fluctuations at nanoscale and possible other aspecific binding, which mask the experimental output. Big efforts are devoted to develop methods for effective selection of the relevant experimental data, before taking the quantitative analysis of bond parameters. Here we present a methodology which is based on the application of graph theory. The force-distance curves corresponding to repeated pulling events are mapped onto their correlation network (mathematical graph). On these graphs the groups of similar curves appear as topological modules, which are identified using the spectral analysis of graphs. We demonstrate the approach by analyzing a large ensemble of the force-distance curves measured on: ssDNA-ssDNA, peptide-RNA (system from HIV1), and peptide-Au surface. Within our data sets the methodology systematically separates subgroups of curves which are related to different intermolecular interactions and to spatial arrangements in which the molecules are brought together and/or pulling speeds. This demonstrates the sensitivity of the method to the spatial degrees of freedom, suggesting potential applications in the case of large molecular complexes and situations with multiple binding sites

    Perturbative study for domain-wall fermions in 4+1 dimensions

    Get PDF
    We investigate a U(1) chiral gauge model in 4+1 dimensions formulated on the lattice via the domain-wall method. We calculate an effective action for smooth background gauge fields at a fermion one loop level. From this calculation we discuss properties of the resulting 4 dimensional theory, such as gauge invariance of 2 point functions, gauge anomalies and an anomaly in the fermion number current.Comment: 39 pages incl. 9 figures, REVTeX+epsf, uuencoded Z-compressed .tar fil

    Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration

    Full text link
    This paper presents flow simulation results of the EUROLIFT DLR-F11 multi-element wing configuration, obtained with a highly scalable finite element solver, PHASTA. This work was accomplished as a part of the 2nd high lift prediction workshop. In-house meshes were constructed with increasing mesh density for analysis. A solution adaptive approach was used as an alternative and its effectiveness was studied by comparing its results with the ones obtained with other meshes. Comparisons between the numerical solution obtained with unsteady RANS turbulence model and available experimental results are provided for verification and discussion. Based on the observations, future direction for adaptive research and simulations with higher fidelity turbulence models is outlined.Comment: 52nd Aerospace Sciences Meetin

    Bond breaking in vibrationally excited methane on transition metal catalysts

    Get PDF
    The role of vibrational excitation of a single mode in the scattering of methane is studied by wave packet simulations of oriented CH4 and CD4 molecules from a flat surface. All nine internal vibrations are included. In the translational energy range from 32 up to 128 kJ/mol we find that initial vibrational excitations enhance the transfer of translational energy towards vibrational energy and increase the accessibility of the entrance channel for dissociation. Our simulations predict that initial vibrational excitations of the asymmetrical stretch (nu_3) and especially the symmetrical stretch (nu_1) modes will give the highest enhancement of the dissociation probability of methane.Comment: 4 pages REVTeX, 2 figures (eps), to be published in Phys. Rev. B. (See also arXiv:physics.chem-ph/0003031). Journal version at http://publish.aps.org/abstract/PRB/v61/p1565
    corecore