14 research outputs found
Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis
The endoperoxide sesquiterpene lactone artemisinin and its derivatives are a promising new group of drugs against malaria. Artemisinin is a constituent of the annual herb Artemisia annua L. So far only the later steps in artemisinin biosynthesis - from artemisinic acid - have been elucidated and the expected olefinic sesquiterpene intermediate has never been demonstrated. In pentane extracts of A. annua leaves we detected a sesquiterpene with the mass spectrum of amorpha-4,11-diene. Synthesis of amorpha-4,11-diene from artemisinic acid confirmed the identity. In addition we identified several sesquiterpene synthases of which one of the major activities catalysed the formation of amorpha-4,11-diene from farnesyl diphosphate. This enzyme was partially purified and shows the typical characteristics of sesquiterpene syntheses, such as a broad pH optimum around 6.5-7.0, a molecular mass of 56 kDa, and a K-m of 0.6 mu M. The structure and configuration of amorpha-4,11-diene, its low content in A. annua and the high activity of amorpha-4,11-diene synthase all support that amorpha-4,11-diene is the likely olefinic sesquiterpene intermediate in the biosynthesis of artemisinin. (C) 1999 Elsevier Science Ltd. All rights reserved
In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma
Contains fulltext :
118630.pdf (publisher's version ) (Open Access)Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the leading cause of cancer-related death in children. While it is clear that surgery (if possible), and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular
Downside risk in multiperiod tracking error models
The recent crisis made it evident that replicating the performance of a benchmark is not a sufficient goal to meet the expectations of usually risk-averse investors. The manager should also consider that the investors are seeking downside protection when the benchmark performs poorly and thus they should integrate a form of downside risk control. We propose a multiperiod double tracking error portfolio model which combines these two goals and provides enough flexibility. In particular, the control of the downside risk is carried out through the presence of a floor benchmark with respect to which we can accept different levels of shortfall. The choice of a proper measure for downside risk leads to different problem formulations and investment strategies which can reflect different attitudes towards risk. The proposed model is tested through a set of out-of-sample rolling simulations in different market conditions