12 research outputs found
Malignant Transformation Involving CXXC4 Mutations Identified in a Leukemic Progression Model of Severe Congenital Neutropenia
Olofsen et al. show that acquisition of a mutation in Cxxc4 results in increased CXXC4 protein levels, reduced TET2 protein, increased inflammatory signaling, and leukemic progression of a CSF3R/RUNX1 mutant mouse model of severe congenital neutropenia (SCN).Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appearance of hematopoietic clones with CSF3 receptor (CSF3R) mutations in the neutropenic phase, followed by mutations in RUNX1 before AML becomes overt. To investigate how the combination of CSF3 therapy and CSF3R and RUNX1 mutations contributes to AML development, we make use of mouse models, SCN-derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples. CSF3 provokes a hyper-proliferative state in CSF3R/RUNX1 mutant hematopoietic progenitors but does not cause overt AML. Intriguingly, an additional acquired driver mutation in Cxxc4 causes elevated CXXC4 and reduced TET2 protein levels in murine AML samples. Expression of multiple pro-inflammatory pathways is elevated in mouse AML and human SCN-AML, suggesting that inflammation driven by downregulation of TET2 activity is a critical step in the malignant transformation of SCN
GLM-based optimization of NGS data analysis: A case study of Roche 454, Ion Torrent PGM and Illumina NextSeq sequencing data
BACKGROUND: There are various next-generation sequencing techniques, all of them striving to replace Sanger sequencing as the gold standard. However, false positive calls of single nucleotide variants and especially indels are a widely known problem of basically all sequencing platforms. METHODS: We considered three common next-generation sequencers—Roche 454, Ion Torrent PGM and Illumina NextSeq—and applied standard as well as optimized variant calling pipelines. Optimization was achieved by combining information of 23 diverse parameters characterizing the reported variants and generating individually calibrated generalized linear models. Models were calibrated using amplicon-based targeted sequencing data (19 genes, 28,775 bp) from seven to 12 myelodysplastic syndrome patients. Evaluation of the optimized pipelines and platforms was performed using sequencing data from three additional myelodysplastic syndrome patients. RESULTS: Using standard analysis methods, true mutations were missed and the obtained results contained many artifacts—no matter which platform was considered. Analysis of the parameters characterizing the true and false positive calls revealed significant platform- and variant specific differences. Application of optimized variant calling pipelines considerably improved results. 76% of all false positive single nucleotide variants and 97% of all false positive indels could be filtered out. Positive predictive values could be increased by factors of 1.07 to 1.27 in case of single nucleotide variant calling and by factors of 3.33 to 53.87 in case of indel calling. Application of the optimized variant calling pipelines leads to comparable results for all next-generation sequencing platforms analyzed. However, regarding clinical diagnostics it needs to be considered that even the optimized results still contained false positive as well as false negative calls.<br
Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data
Valid variant calling results are crucial for the use of next-generation sequencing in clinical routine. However, there are numerous variant calling tools that usually differ in algorithms, filtering strategies, recommendations and thus, also in the output. We evaluated eight open-source tools regarding their ability to call single nucleotide variants and short indels with allelic frequencies as low as 1% in non-matched next-generation sequencing data: GATK HaplotypeCaller, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools and VarDict. We analysed two real datasets from patients with myelodysplastic syndrome, covering 54 Illumina HiSeq samples and 111 Illumina NextSeq samples. Mutations were validated by re-sequencing on the same platform, on a different platform and expert based review. In addition we considered two simulated datasets with varying coverage and error profiles, covering 50 samples each. In all cases an identical target region consisting of 19 genes (42,322 bp) was analysed. Altogether, no tool succeeded in calling all mutations. High sensitivity was always accompanied by low precision. Influence of varying coverages- and background noise on variant calling was generally low. Taking everything into account, VarDict performed best. However, our results indicate that there is a need to improve reproducibility of the results in the context of multithreading
Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor
The combined use of retinoic acid and chemotherapy has led to an important
improvement of cure rates in acute promyelocytic leukemia. Retinoic acid
forces terminal maturation of the malignant cells and this application
represents the first generally accepted differentiation-based therapy in
leukemia. Unfortunately, similar approaches have failed in other types of
hematological malignancies suggesting that the applicability is limited to
this specific subgroup of patients. This has been endorsed by the
notorious lack of response in acute promyelocytic leukemia bearing the
variant t(11;17) translocation. Based on the reported synergistic effects
of retinoic acid and the hematopoietic growth factor granulocyte
colony-stimulating factor (G-CSF), we studied maturation of t(11;17)
positive leukemia cells using several combinations of retinoic acid and
growth factors. In cultures with retinoic acid or G-CSF the leukemic cells
did not differentiate into mature granulocytes, but striking granulocytic
differentiation occurred with the combination of both agents. At relapse,
the patient was treate
Mapping epigenetic regulator gene mutations in cytogenetically normal pediatric acute myeloid leukemia
Contains fulltext :
137409.pdf (publisher's version ) (Open Access
Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes
Flow cytometric analysis is a recommended tool in the diagnosis of myelodysplastic syndromes. Current flow cytometric approaches evaluate the (im)mature myelo-/monocytic lineage with a median sensitivity and specificity of ~71% and ~93%, respectively. We hypothesized that the addition of erythroid lineage analysis could increase the sensitivity of flow cytometry. Hereto, we validated the analysis of erythroid lineage parameters recommended by the International/European LeukemiaNet Working Group for Flow Cytometry in Myelodysplastic Syndromes, and incorporated this evaluation in currently applied flow cytometric models. One hundred and sixty-seven bone marrow aspirates were analyzed; 106 patients with myelodysplastic syndromes, and 61 cytopenic controls. There was a strong correlation between presence of erythroid aberrancies assessed by flow cytometry and the diagnosis of myelodysplastic syndromes when validating the previously described erythroid evaluation. Furthermore, addition of erythroid aberrancies to two different flow cytometric models led to an increased sensitivity in detecting myelodysplastic syndromes: from 74% to 86% for the addition to the diagnostic score designed by Ogata and colleagues, and from 69% to 80% for the addition to the integrated flow cytometric score for myelodysplastic syndromes, designed by our group. In both models the specificity was unaffected. The high sensitivity and specificity of flow cytometry in the detection of myelodysplastic syndromes illustrates the important value of flow cytometry in a standardized diagnostic approach
Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes
Flow cytometric analysis is a recommended tool in the diagnosis of myelodysplastic syndromes. Current flow cytometric approaches evaluate the (im)mature myelo-/monocytic lineage with a median sensitivity and specificity of ~71% and ~93%, respectively. We hypothesized that the addition of erythroid lineage analysis could increase the sensitivity of flow cytometry. Hereto, we validated the analysis of erythroid lineage parameters recommended by the International/European LeukemiaNet Working Group for Flow Cytometry in Myelodysplastic Syndromes, and incorporated this evaluation in currently applied flow cytometric models. One hundred and sixty-seven bone marrow aspirates
Association of disparities in known minor histocompatibility antigens with relapse-free survival and graft-versus-host disease after allogeneic stem cell transplantation
Item does not contain fulltextAllogeneic stem cell transplantation (allo-SCT) can induce remission in patients with hematologic malignancies due to graft-versus-tumor (GVT) responses. This immune-mediated antitumor effect is often accompanied by detrimental graft-versus-host disease (GVHD), however. Both GVT and GVHD are mediated by minor histocompatibility antigen (MiHA)-specific T cells recognizing peptide products from polymorphic genes that differ between recipient and donor. In this study, we evaluated whether mismatches in a panel of 17 MiHAs are associated with clinical outcome after partially T cell-depleted allo-SCT. Comprehensive statistical analysis revealed that DNA mismatches for one or more autosomal-encoded MiHAs was associated with increased relapse-free survival in recipients of sibling transplants (P = .04), particularly in those with multiple myeloma (P = .02). Moreover, mismatches for the ubiquitous Y chromosome-derived MiHAs resulted in a higher incidence of acute GVHD grade III-IV (P = .004), whereas autosomal MiHA mismatches, ubiquitous or restricted to hematopoietic cells, were not associated with severe GVHD. Finally, we found considerable differences among MiHAs in their capability of inducing in vivo T cell responses using dual-color tetramer analysis of peripheral blood samples collected after allo-SCT. Importantly, detection of MiHA-specific T cell responses was associated with improved relapse-free survival in recipients of sibling transplants (P = .01). Our findings provide a rationale for further boosting GVT immunity toward autosomal MiHAs with a hematopoietic restriction to improve outcomes after HLA-matched allo-SCT