13,967 research outputs found

    Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime

    Full text link
    We investigate the magnetoresistance of epitaxially grown, heavily doped n-type GaAs layers with thickness (40-50 nm) larger than the electronic mean free path (23 nm). The temperature dependence of the dissipative resistance R_{xx} in the quantum Hall effect regime can be well described by a hopping law (R_{xx} \propto exp{-(T_0/T)^p}) with p=0.6. We discuss this result in terms of variable range hopping in a Coulomb gap together with a dependence of the electron localization length on the energy in the gap. The value of the exponent p>0.5 shows that electron-electron interactions have to be taken into account in order to explain the occurrence of the quantum Hall effect in these samples, which have a three-dimensional single electron density of states.Comment: 5 pages, 2 figures, 1 tabl

    3D-melting features of the irreversibility line in overdoped Bi2_2Sr2_2CuO6_6 at ultra-low temperature and high magnetic field

    Full text link
    We have measured the irreversible magnetization of an overdoped Bi2_2Sr2_2CuO6_6 single crystal up to B=28 T and down to T=60 mK, and extracted the irreversibility line Birr(T)B_{\rm irr}(T): the data can be interpreted in the whole temperature range as a 3D-anisotropic vortex lattice melting line with Lindemann number cL=0.13c_{\rm L}=0.13. We also briefly discuss the applicability of alternative models such as 2D- and quantum melting, and the connection with magnetoresistance experiments.Comment: M2S-HTSC-VI Conference paper (2 pages, 1 figure), using Elsevier style espcrc2.st

    Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

    Full text link
    Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.Comment: 12 pages, 6 figure

    Hysteresis in the de Haas-van Alphen Effect

    Full text link
    A hysteresis loop is observed for the first time in the de Haas-van Alphen (dHvA) effect of beryllium at low temperatures and quantizing magnetic field applied parallel to the hexagonal axis of the single crystal. The irreversible behavior of the magnetization occurs at the paramagnetic part of the dHvA period in conditions of Condon domain formation arising by strong enough dHvA amplitude. The resulting extremely nonlinear response to a very small modulation field offers the possibility to find in a simple way the Condon domain phase diagram. From a harmonic analysis, the shape and size of the hysteresis loop is constructed.Comment: 4 pages, 5 figures, submitted to PR

    Direct Observation of Condon Domains in Silver by Hall Probes

    Full text link
    Using a set of micro Hall probes for the detection of the local induction, the inhomogeneous Condon domain structure has been directly observed at the surface of a pure silver single crystal under strong Landau quantization in magnetic fields up to 10 T. The inhomogeneous induction occurs in the theoretically predicted part of the H-T Condon domain phase diagram. Information about size, shape and orientation of the domains is obtained by analyzing Hall probes placed along and across the long sample axis and by tilting the sample. On a beryllium surface the induction inhomogeneity is almost absent although the expected induction splitting here is at least ten times higher than in silver.Comment: 4 pages, 6 figures, submitted to PR

    InAs-AlSb quantum wells in tilted magnetic fields

    Full text link
    InAs-AlSb quantum wells are investigated by transport experiments in magnetic fields tilted with respect to the sample normal. Using the coincidence method we find for magnetic fields up to 28 T that the spin splitting can be as large as 5 times the Landau splitting. We find a value of the g-factor of about 13. For small even-integer filling factors the corresponding minima in the Shubnikov-de Haas oscillations cannot be tuned into maxima for arbitrary tilt angles. This indicates the anti-crossing of neighboring Landau and spin levels. Furthermore we find for particular tilt angles a crossover from even-integer dominated Shubnikov-de Haas minima to odd-integer minima as a function of magnetic field
    • …
    corecore