18,581 research outputs found
Island formation without attractive interactions
We show that adsorbates on surfaces can form islands even if there are no
attractive interactions. Instead strong repulsion between adsorbates at short
distances can lead to islands, because such islands increase the entropy of the
adsorbates that are not part of the islands. We suggest that this mechanism
cause the observed island formation in O/Pt(111), but it may be important for
many other systems as well.Comment: 11 pages, 4 figure
Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime
We investigate the magnetoresistance of epitaxially grown, heavily doped
n-type GaAs layers with thickness (40-50 nm) larger than the electronic mean
free path (23 nm). The temperature dependence of the dissipative resistance
R_{xx} in the quantum Hall effect regime can be well described by a hopping law
(R_{xx} \propto exp{-(T_0/T)^p}) with p=0.6. We discuss this result in terms of
variable range hopping in a Coulomb gap together with a dependence of the
electron localization length on the energy in the gap. The value of the
exponent p>0.5 shows that electron-electron interactions have to be taken into
account in order to explain the occurrence of the quantum Hall effect in these
samples, which have a three-dimensional single electron density of states.Comment: 5 pages, 2 figures, 1 tabl
Incommensurate spin density modulation in a copper-oxide chain compound with commensurate charge order
Neutron diffraction has been used to determine the magnetic structure of
NaCuO, a stoichiometric compound containing chains based on
edge-sharing CuO plaquettes. The chains are doped with 2/5 hole per Cu site
and exhibit long-range commensurate charge order with an onset well above room
temperature. Below K, the neutron data indicate long-range collinear
magnetic order with a spin density modulation whose propagation vector is
commensurate along and incommensurate perpendicular to the chains. Competing
interchain exchange interactions are discussed as a possible origin of the
incommensurate magnetic order
Hysteresis in the de Haas-van Alphen Effect
A hysteresis loop is observed for the first time in the de Haas-van Alphen
(dHvA) effect of beryllium at low temperatures and quantizing magnetic field
applied parallel to the hexagonal axis of the single crystal. The irreversible
behavior of the magnetization occurs at the paramagnetic part of the dHvA
period in conditions of Condon domain formation arising by strong enough dHvA
amplitude. The resulting extremely nonlinear response to a very small
modulation field offers the possibility to find in a simple way the Condon
domain phase diagram. From a harmonic analysis, the shape and size of the
hysteresis loop is constructed.Comment: 4 pages, 5 figures, submitted to PR
Thermodynamics with Dynamical Clover Fermions
We investigate the finite temperature behavior of nonperturbatively improved
clover fermions on lattices with temporal extent N_t=4 and 6. Unfortunately in
the gauge coupling range, where the clover coefficient has been determined
nonperturbatively, the finite temperature crossover/transition occurs at heavy
pseudoscalar masses and large pseudoscalar to vector meson mass ratios.
However, on an N_t=6 lattice the thermal crossover for the improved fermions is
much smoother than for unimproved Wilson fermions and no strange metastable
behavior is observed.Comment: 8 pages, LaTeX, 5 postscript figure
- …