1 research outputs found

    Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock

    Get PDF
    Introduction: Recent clinical studies have shown a relationship between abnormalities in peripheral perfusion and unfavorable outcome in patients with circulatory shock. Nitroglycerin is effective in restoring alterations in microcirculatory blood flow. The aim of this study was to investigate whether nitroglycerin could correct the parameters of abnormal peripheral circulation in resuscitated circulatory shock patients.Methods: This interventional study recruited patients who had circulatory shock and who persisted with abnormal peripheral perfusion despite normalization of global hemodynamic parameters. Nitroglycerin started at 2 mg/hour and doubled stepwise (4, 8, and 16 mg/hour) each 15 minutes until an improvement in peripheral perfusion was observed. Peripheral circulation parameters included capillary refill time (CRT), skin-temperature gradient (Tskin-diff), perfusion index (PI), and tissue oxygen saturation (StO2) during a reactive hyperemia test (RincStO2). Measurements were performed before, at the maximum dose, and after cessation of nitroglycerin infusion. Data were analyzed by using linear model for repeated measurements and are presented as mean (standard error).Results: Of the 15 patients included, four patients (27%) responded with an initial nitroglycerin dose of 2 mg/hour. In all patients, nitroglycerin infusion resulted in significant changes in CRT, Tskin-diff, and PI toward normal at the maximum dose of nitroglycerin: from 9.4 (0.6) seconds to 4.8 (0.3) seconds (P <0.05), from 3.3°C (0.7°C) to 0.7°C (0.6°C) (P <0.05), and from [log] -0.5% (0.2%) to 0.7% (0.1%) (P <0.05), respectively. Similar changes in StO2 and RincStO2 were observed: from 75% (3.4%) to 84% (2.7%) (P <0.05) and 1.9%/second (0.08%/second) to 2.8%/second (0.05%/second) (P <0.05), respectively. The magnitude of changes in StO2 was more prono
    corecore