1,116 research outputs found

    Minimal knotted polygons in cubic lattices

    Full text link
    An implementation of BFACF-style algorithms on knotted polygons in the simple cubic, face centered cubic and body centered cubic lattice is used to estimate the statistics and writhe of minimal length knotted polygons in each of the lattices. Data are collected and analysed on minimal length knotted polygons, their entropy, and their lattice curvature and writhe

    Fresh look at randomly branched polymers

    Full text link
    We develop a new, dynamical field theory of isotropic randomly branched polymers, and we use this model in conjunction with the renormalization group (RG) to study several prominent problems in the physics of these polymers. Our model provides an alternative vantage point to understand the swollen phase via dimensional reduction. We reveal a hidden Becchi-Rouet-Stora (BRS) symmetry of the model that describes the collapse (θ\theta-)transition to compact polymer-conformations, and calculate the critical exponents to 2-loop order. It turns out that the long-standing 1-loop results for these exponents are not entirely correct. A runaway of the RG flow indicates that the so-called θ′\theta^\prime-transition could be a fluctuation induced first order transition.Comment: 4 page

    Partially directed paths in a wedge

    Full text link
    The enumeration of lattice paths in wedges poses unique mathematical challenges. These models are not translationally invariant, and the absence of this symmetry complicates both the derivation of a functional recurrence for the generating function, and solving for it. In this paper we consider a model of partially directed walks from the origin in the square lattice confined to both a symmetric wedge defined by Y=±pXY = \pm pX, and an asymmetric wedge defined by the lines Y=pXY= pX and Y=0, where p>0p > 0 is an integer. We prove that the growth constant for all these models is equal to 1+21+\sqrt{2}, independent of the angle of the wedge. We derive functional recursions for both models, and obtain explicit expressions for the generating functions when p=1p=1. From these we find asymptotic formulas for the number of partially directed paths of length nn in a wedge when p=1p=1. The functional recurrences are solved by a variation of the kernel method, which we call the ``iterated kernel method''. This method appears to be similar to the obstinate kernel method used by Bousquet-Melou. This method requires us to consider iterated compositions of the roots of the kernel. These compositions turn out to be surprisingly tractable, and we are able to find simple explicit expressions for them. However, in spite of this, the generating functions turn out to be similar in form to Jacobi θ\theta-functions, and have natural boundaries on the unit circle.Comment: 26 pages, 5 figures. Submitted to JCT

    Forcing Adsorption of a Tethered Polymer by Pulling

    Full text link
    We present an analysis of a partially directed walk model of a polymer which at one end is tethered to a sticky surface and at the other end is subjected to a pulling force at fixed angle away from the point of tethering. Using the kernel method, we derive the full generating function for this model in two and three dimensions and obtain the respective phase diagrams. We observe adsorbed and desorbed phases with a thermodynamic phase transition in between. In the absence of a pulling force this model has a second-order thermal desorption transition which merely gets shifted by the presence of a lateral pulling force. On the other hand, if the pulling force contains a non-zero vertical component this transition becomes first-order. Strikingly, we find that if the angle between the pulling force and the surface is beneath a critical value, a sufficiently strong force will induce polymer adsorption, no matter how large the temperature of the system. Our findings are similar in two and three dimensions, an additional feature in three dimensions being the occurrence of a reentrance transition at constant pulling force for small temperature, which has been observed previously for this model in the presence of pure vertical pulling. Interestingly, the reentrance phenomenon vanishes under certain pulling angles, with details depending on how the three-dimensional polymer is modeled

    Confinement of knotted polymers in a slit

    Full text link
    We investigate the effect of knot type on the properties of a ring polymer confined to a slit. For relatively wide slits, the more complex the knot, the more the force exerted by the polymer on the walls is decreased compared to an unknotted polymer of the same length. For more narrow slits the opposite is true. The crossover between these two regimes is, to first order, at smaller slit width for more complex knots. However, knot topology can affect these trends in subtle ways. Besides the force exerted by the polymers, we also study other quantities such as the monomer-density distribution across the slit and the anisotropic radius of gyration.Comment: 9 pages, 6 figures, submitted for publicatio

    Collapsing lattice animals and lattice trees in two dimensions

    Full text link
    We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second order transitions from an extended to a collapsed phase in the resulting 2-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into two different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees, but the other is {\it not yet} bond driven and does not contain the Derrida-Herrmann model as special point. Instead it ends at a multicritical point P∗P^* where a transition line between two collapsed phases (one bond-driven and the other contact-driven) sparks off. The Derrida-Herrmann model is representative for the bond driven collapse, which then forms the fourth universality class on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.Comment: 11 pages, 16 figures, 1 tabl

    The protein puzzle : the consumption and production of meat, dairy and fish in the European Union

    Get PDF
    In het rapport 'The protein puzzle. The consumption and production of meat, dairy and fish in the European Union' brengen onderzoekers van het Planbureau voor de Leefomgeving (PBL) in kaart wat de gevolgen van de productie en consumptie van dierlijke eiwitten zijn voor milieu, natuur en gezondheid. Vervolgens schetst het PBL welke opties er in Europees verband zijn om de negatieve effecten te verminderen. Met deze studie verschaft het PBL relevante feiten en cijfers ten behoeve van het debat over eiwitconsumptie, inclusief een indicatie van de onzekerheden daarbij

    Simulations of lattice animals and trees

    Full text link
    The scaling behaviour of randomly branched polymers in a good solvent is studied in two to nine dimensions, using as microscopic models lattice animals and lattice trees on simple hypercubic lattices. As a stochastic sampling method we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. Essentially we start simulating percolation clusters (either site or bond), re-weigh them according to the animal (tree) ensemble, and prune or branch the further growth according to a heuristic fitness function. In contrast to previous applications of PERM, this fitness function is {\it not} the weight with which the actual configuration would contribute to the partition sum, but is closely related to it. We obtain high statistics of animals with up to several thousand sites in all dimension 2 <= d <= 9. In addition to the partition sum (number of different animals) we estimate gyration radii and numbers of perimeter sites. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and >= 8. In addition, we present the hitherto most precise estimates for growth constants in d >= 3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy. Finally, we discuss the collapse of animals and trees, arguing that our present version of the algorithm is also efficient for some of the models studied in this context, but showing that it is {\it not} very efficient for the `classical' model for collapsing animals.Comment: 17 pages RevTeX, 29 figures include

    The design of a JADE compliant manufacturing ontology and accompanying relational database schema

    Get PDF
    Published ArticleTo enable meaningful and consistent communication between different software systems in a particular domain (such as manufacturing, law or medicine), a standardised vocabulary and communication language is required by all the systems involved. Concepts in the domain about which the systems want to communicate are formalized in an ontology by establishing the meaning of concepts and creating relationships between them. The inputs to this process in found by analysing the physical domain and its processes. The resulting ontology structure is a computer useable representation of the physical domain about which the systems want to communicate. To enable the long term persistence of the actual data contained in these concepts and the enforcement of various business rules, a sufficiently powerful database system is required. This paper presents the design of a manufacturing ontology and its accompanying relational database schema that will be used in a manufacturing test domain
    • …
    corecore