3 research outputs found

    Effects of correcting metabolic acidosis on muscle mass and functionality in chronic kidney disease:a systematic review and meta-analysis

    Get PDF
    Metabolic acidosis unfavourably influences the nutritional status of patients with non-dialysis dependent chronic kidney disease (CKD) including the loss of muscle mass and functionality, but the benefits of correction are uncertain. We investigated the effects of correcting metabolic acidosis on nutritional status in patients with CKD in a systematic review and meta-analysis. A search was conducted in MEDLINE and the Cochrane Library from inception to June 2023. Study selection, bias assessment, and data extraction were independently performed by two reviewers. The Cochrane risk of bias tool was used to assess the quality of individual studies. We applied random effects meta-analysis to obtain pooled standardized mean difference (SMD) and 95% confidence intervals (CIs). We retrieved data from 12 intervention studies including 1995 patients, with a mean age of 63.7 ± 11.7 years, a mean estimated glomerular filtration rate of 29.8 ± 8.8 mL/min per 1.73 m2, and 58% were male. Eleven studies performed an intervention with oral sodium bicarbonate compared with either placebo or with standard care and one study compared veverimer, an oral HCl-binding polymer, with placebo. The mean change in serum bicarbonate was +3.6 mEq/L in the intervention group and +0.4 mEq/L in the control group. Correcting metabolic acidosis significantly improved muscle mass assessed by mid-arm muscle circumference (SMD 0.35 [95% CI 0.16 to 0.54], P &lt; 0.001) and functionality assessed with the sit-to-stand test (SMD −0.31 [95% CI −0.52 to 0.11], P = 0.003). We found no statistically significant effects on dietary protein intake, handgrip strength, serum albumin and prealbumin concentrations, and blood urea nitrogen. Correcting metabolic acidosis in patients with CKD improves muscle mass and physical function. Correction of metabolic acidosis should be considered as part of the nutritional care for patients with CKD.</p

    Protein requirements and provision in hospitalised COVID-19 ward and ICU patients : Agreement between calculations based on body weight and height, and measured bioimpedance lean body mass

    No full text
    Background: A large proportion of hospitalised COVID-19 patients are overweight. There is no consensus in the literature on how lean body mass (LBM) can best be estimated to adequately guide nutritional protein recommendations in hospitalised patients who are not at an ideal weight. We aim to explore which method best agrees with lean body mass as measured by bioelectric impedance (LBMBIA) in this population. Methods: LBM was calculated by five commonly used methods for 150 hospitalised COVID-19 patients previously included in the BIAC-19 study; total body weight, regression to a BMI of 22.5, regression to BMI 27.5 when BMI>30, and the equations described by Gallagher and the ESPEN ICU guideline. Error–standard plots were used to assess agreement and bias compared to LBMBIA. The actual protein provided to ICU patients during their stay was compared to targets set using LBMBIA and LBM calculated by other methods. Results: All methods to calculate LBM suffered from overestimation, underestimation, fixed- and proportional bias and wide limits of agreement compared to LBMBIA. Bias was inconsistent across sex and BMI subgroups. Twenty-eight ICU patients received a mean of 51.19 (95%-BCa CI 37.1;64.1) grams of protein daily, accumulating to a mean of 61.6% (95%-BCa CI 43.2;80.8) of TargetBIA during their ICU stay. The percentage received of the target as calculated by the LBMGallagher method for males was the only one to not differ significantly from the percentage received of TargetBIA (mean difference 1.4% (95%-BCa CI -1.3;4.6) p = 1.0). Conclusions: We could not identify a mathematical method for calculating LBM that had an acceptable agreement with LBM as derived from BIA for males and females across all BMI subgroups in our hospitalised COVID-19 population. Consequently, discrepancies when assessing the adequacy of protein provision in ICU patients were found. We strongly advise using baseline LBMBIA to guide protein dosing if possible. In the absence of BIA, using a method that overestimates LBM in all categories may be the only way to minimise underdosing of nutritional protein. Trial registration: The protocol of the BIAC-19 study, of which this is a post-hoc sub-analysis, is registered in the Netherlands Trial Register (number NL8562)
    corecore