1 research outputs found
Three-dimensionality of space and the quantum bit: an information-theoretic approach
It is sometimes pointed out as a curiosity that the state space of quantum
two-level systems, i.e. the qubit, and actual physical space are both
three-dimensional and Euclidean. In this paper, we suggest an
information-theoretic analysis of this relationship, by proving a particular
mathematical result: suppose that physics takes place in d spatial dimensions,
and that some events happen probabilistically (not assuming quantum theory in
any way). Furthermore, suppose there are systems that carry "minimal amounts of
direction information", interacting via some continuous reversible time
evolution. We prove that this uniquely determines spatial dimension d=3 and
quantum theory on two qubits (including entanglement and unitary time
evolution), and that it allows observers to infer local spatial geometry from
probability measurements.Comment: 13 + 22 pages, 9 figures. v4: some clarifications, in particular in
Section V / Appendix C (added Example 39