147 research outputs found

    Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices

    Full text link
    In this paper we present calculations on the electronic band structure of a two-dimensional lateral superlattice subject to a perpendicular magnetic field by employing a projection operator technique based on the ray-group of magnetotranslation operators. We construct a new basis of appropriately symmetrized Bloch-like wavefunctions as linear combination of well-localized magnetic-Wannier functions. The magnetic field was consistently included in the Wannier functions defined in terms of free-electron eigenfunctions in the presence of external magnetic field in the symmetric gauge. Using the above basis, we calculate the magnetic energy spectrum of electrons in a lateral superlattice with bi-directional weak electrostatic modulation. Both a square lattice and a triangular one are considered as special cases. Our approach based on group theory handles the cases of integer and rational magnetic fluxes in a uniform way and the provided basis could be convenient for further both analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006

    On boson algebras as Hopf algebras

    Full text link
    Certain types of generalized undeformed and deformed boson algebras which admit a Hopf algebra structure are introduced, together with their Fock-type representations and their corresponding RR-matrices. It is also shown that a class of generalized Heisenberg algebras including those algebras including those underlying physical models such as that of Calogero-Sutherland, is isomorphic with one of the types of boson algebra proposed, and can be formulated as a Hopf algebra.Comment: LaTex, 18 page

    Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator

    Get PDF
    In the Heisenberg picture, the generalized invariant and exact quantum motions are found for a time-dependent forced harmonic oscillator. We find the eigenstate and the coherent state of the invariant and show that the dispersions of these quantum states do not depend on the external force. Our formalism is applied to several interesting cases.Comment: 15 pages, two eps files, to appear in Phys. Rev. A 53 (6) (1996

    p-Adic and Adelic Harmonic Oscillator with Time-Dependent Frequency

    Get PDF
    The classical and quantum formalism for a p-adic and adelic harmonic oscillator with time-dependent frequency is developed, and general formulae for main theoretical quantities are obtained. In particular, the p-adic propagator is calculated, and the existence of a simple vacuum state as well as adelic quantum dynamics is shown. Space discreteness and p-adic quantum-mechanical phase are noted.Comment: 10 page

    Particle production and classical condensates in de Sitter space

    Get PDF
    The cosmological particle production in a k=0k=0 expanding de Sitter universe with a Hubble parameter H0H_0 is considered for various values of mass or conformal coupling of a free, scalar field. One finds that, for a minimally coupled field with mass 0m2<9H02/40 \leq m^2 < 9 H_0^2/4 (except for m2=2H02m^2= 2H_0^2), the one-mode occupation number grows to unity soon after the physical wavelength of the mode becomes larger than the Hubble radius, and afterwards diverges as n(t)O(1)(λphys(t)/H01)2νn(t) \sim O(1)(\lambda_{phys}(t)/H_0^{-1})^{2\nu}, where ν[9/4m2/H02]1/2\nu \equiv [9/4 - m^2/H_0^2]^{1/2}. However, for a field with m2>9H02/4m^2 > 9H_0^2/4, the occupation number of a mode outside the Hubble radius is rapidly oscillating and bounded and does not exceed unity. These results, readily generalized for cases of a nonminimal coupling, provide a clear argument that the long-wavelength vacuum fluctuations of low-mass fields in an inflationary universe do show classical behavior, while those of heavy fields do not. The interaction or self-interaction does not appear necessary for the emergence of classical features, which are entirely due to the rapid expansion of the de Sitter background and the upside-down nature of quantum oscillators for modes outside the Hubble radius.Comment: Revtex + 5 postscript figures. Accepted for Phys Rev D15. Revision of Aug 1996 preprint limited to the inclusion and discussion of references suggested by the referee

    New q-deformed coherent states with an explicitly known resolution of unity

    Get PDF
    We construct a new family of q-deformed coherent states z>q|z>_q, where 0<q<10 < q < 1. These states are normalizable on the whole complex plane and continuous in their label zz. They allow the resolution of unity in the form of an ordinary integral with a positive weight function obtained through the analytic solution of the associated Stieltjes power-moment problem and expressed in terms of one of the two Jacksons's qq-exponentials. They also permit exact evaluation of matrix elements of physically-relevant operators. We use this to show that the photon number statistics for the states is sub-Poissonian and that they exhibit quadrature squeezing as well as an enhanced signal-to-quantum noise ratio over the conventional coherent state value. Finally, we establish that they are the eigenstates of some deformed boson annihilation operator and study some of their characteristics in deformed quantum optics.Comment: LaTeX, 26 pages, contains 9 eps figure

    Deformed oscillator algebras for two dimensional quantum superintegrable systems

    Full text link
    Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.Comment: 22 pages, THES-TP 10/93, hep-the/yymmnn
    corecore