3 research outputs found

    Eukaryotic translation initiation factor 2B-beta (eIF2B β), a new class of plant virus resistance gene

    Get PDF
    Recessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bβ). Silencing of eIF2Bβ in a TuMV-susceptible mustard plant line and expression of eIF2Bβ from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bβ is required for efficient TuMV infection. eIF2Bβ represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2·GTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bβ was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bβ

    Long-Term Traditional Fertilization Alters Tea Garden Soil Properties and Tea Leaf Quality in Bangladesh

    No full text
    Soil acidity is one of the major soil-degradation events throughout the world, and the long-term application of nitrogenous fertilizers is thought to be a main cause of soil acidity. In the present experiment, we collected soil and tea (Camellia sinensis L.) leaf samples from five representative tea gardens in Bangladesh and evaluated soil nutrient pools and biochemical properties of tea leaves. The results showed that there was a negative relationship between soil pH and the amount of applied nitrogenous fertilizers. Moreover, continuous application of traditional fertilizers over twenty-five years promoted not only the deficiency of phosphorus (P) and mineral-based cations, such as potassium (K+), calcium (Ca2+), and magnesium (Mg2+), but also increased manganese (Mn2+) and aluminum (Al3+) toxicity in soils, which suppressed the yield and quality of tea. Crucially, tea leaf production remained almost similar (average 1079.77 kg ha−1) from 1995 to 2015, while the application doses of urea, TSP, and MoP increased by 24.69%, 18.92%, and 16.67%, respectively, in garden soils. However, the pH value of soil declined up to 24% from 1992 to 2020 in the tested gardens. Consequently, the availability of K+, P, Ca2+, and Mg2+ decreased by 56%, 25%, 55%, and 49%, respectively, in those tea garden soils. In addition, the quality of tea leaves was severely affected, as evident by the reduced levels of total flavonoids, polyphenols, soluble solids, vitamin C, vitamin B1, and vitamin B2. Moreover, free-radical scavenging activity (DPPH), caffeine, and tannin concentration were increased in tea leaves, which indicated that tea plants were potentially being stressed. Therefore, we study concluded that long-term application of traditional nitrogenous fertilizers can be an important regulator of lowering garden soil pH, which reduces native soil nutrient pools and thereby the yield and quality of tea leaves
    corecore