9 research outputs found

    Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk

    Get PDF
    A multiplexed immunoassay-based antibiotic sensing device integrated in a lab-on-a-chip format is described. The approach is multidisciplinary and involves the convergent development of a multi-antibiotic competitive immunoassay based on sensitive wavelength interrogated optical sensor (WIOS) technology and a polymer-based self-contained microfluidic cartridge. Immunoassay solutions are pressure-driven through external and concerted actuation of a single syringe pump and multiposition valve. Moreover, the use of a novel photosensitive material in a one step fabrication process allowed the rapid fabrication of microfluidic components and interconnection port simultaneously. Pre-filled microfluidic cartridges were used as binary response rapid tests for the simultaneous detection of three antibiotic families – sulfonamides, fluoroquinolones and tetracyclines – in raw milk. For test interpretation, any signal lower than the threshold value obtained for the corresponding Maximum Residue Limit (MRL) concentration (100 µg L-1) was considered negative for a given antibiotic. The reliability of the multiplexed detection system was assessed by way of a validation test carried out on a series of six blind milk samples. A test accuracy of 95% was calculated from this experiment. The whole immunoassay procedure is fast (less than 10 minutes) and easy to handle (automated actuation)

    Synthesis of a (desSer1 Ile29 Leu89) chicken cystatin gene, expression in E. coli as fusion protein and its isolation

    Get PDF
    AbstractA synthetic gene coding for the cysteine proteinase inhibitor (desSer 1 Ile29 Leu89) chicken cystatin was cloned and expressed in E. coli. The gene was assembled from 12 oligonucleotides and inserted into vector pUC 8. Expression as fusion protein was performed in a temperature-inducible E. coli system. The expression product was synthesized as 20% of total E. coli protein. The fusion protein was purified, the chicken cystatin homologue was split off with CNBr and the N-terminal sequence confirmed up to position 37. The properties of the purified material correspond to those of natural chicken cystatin. The recombinant cystatin variant binds anti-chicken cystatin IgG, is inhibitorily active and displays Ki values with papain and with cathepsin B similar to those determined for natural chicken cystatin
    corecore