118 research outputs found
Redox-Mediated Inactivation of the Transcriptional Repressor RcrR is Responsible for Uropathogenic Escherichia coli's Increased Resistance to Reactive Chlorine Species
The ability to overcome stressful environments is critical for pathogen survival in the host. One challenge for bacteria is the exposure to reactive chlorine species (RCS), which are generated by innate immune cells as a critical part of the oxidative burst. Hypochlorous acid (HOCl) is the most potent antimicrobial RCS and is associated with extensive macromolecular damage in the phagocytized pathogen. However, bacteria have evolved defense strategies to alleviate the effects of HOCl-mediated damage. Among these are RCS-sensing transcriptional regulators that control the expression of HOCl-protective genes under non-stress and HOCl stress. Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections (UTIs), is particularly exposed to infiltrating neutrophils during pathogenesis; however, their responses to and defenses from HOCl are still completely unexplored. Here, we present evidence that UPEC strains tolerate higher levels of HOCl and are better protected from neutrophil-mediated killing compared with other E. coli. Transcriptomic analysis of HOCl-stressed UPEC revealed the upregulation of an operon consisting of three genes, one of which encodes the transcriptional regulator RcrR. We identified RcrR as a HOCl-responsive transcriptional repressor, which, under non-stress conditions, is bound to the operator and represses the expression of its target genes. During HOCl exposure, however, the repressor forms reversible intermolecular disulfide bonds and dissociates from the DNA resulting in the derepression of the operon. Deletion of one of the target genes renders UPEC significantly more susceptible to HOCl and phagocytosis indicating that the HOCl-mediated induction of the regulon plays a major role for UPEC’s HOCl resistance
The clinical features of the piriformis syndrome: a systematic review
Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis
Surface-initiated growth of copper using isonicotinic acid-functionalized aluminum oxide surfaces
Isonicotinate self-assembled monolayers (SAM) were prepared on alumina surfaces (A) using isonicotinic acid (iNA). These functionalized layers (iNA-A) were used for the seeded growth of copper films (Cu-iNA-A) by hydrazine hydrate-initiated electroless deposition. The films were characterized by scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and advancing contact angle measurements. The films are Cu0 but with surface oxidation, and show a faceted morphology, which is more textured (Rq = 460 ± 90 nm) compared to the SAM (Rq = 2.8 ± 0.5 nm). In contrast, growth of copper films by SnCl2/PdCl2 catalyzed electroless deposition, using formaldehyde (CH2O) as the reducing agent, shows a nodular morphology on top of a relatively smooth surface. No copper films are observed in the absence of the isonicotinate SAM. The binding of Cu2+ to the iNA is proposed to facilitate reduction to Cu0 and create the seed for subsequent growth. The films show good adhesion to the functionalized surface
Sensitization Prevalence, Antibody Cross-Reactivity and Immunogenic Peptide Profile of Api g 2, the Non-Specific Lipid Transfer Protein 1 of Celery
Background: Celery (Apium graveolens) represents a relevant allergen source that can elicit severe reactions in the adult population. To investigate the sensitization prevalence and cross-reactivity of Api g 2 from celery stalks in a Mediterranean population and in a mouse model. Methodology: 786 non-randomized subjects from Italy were screened for IgE reactivity to rApi g 2, rArt v 3 (mugwort pollen LTP) and nPru p 3 (peach LTP) using an allergen microarray. Clinical data of 32 selected patients with reactivity to LTP under investigation were evaluated. Specific IgE titers and cross-inhibitions were performed in ELISA and allergen microarray. Balb/c mice were immunized with purified LTPs; IgG titers were determined in ELISA and mediator release was examined using RBL-2H3 cells. Simulated endolysosomal digestion was performed using microsomes obtained from human DCs. Results: IgE testing showed a sensitization prevalence of 25.6% to Api g 2, 18.6% to Art v 3, and 28.6% to Pru p 3 and frequent co-sensitization and correlating IgE-reactivity was observed. 10/32 patients suffering from LTP-related allergy reported symptoms upon consumption of celery stalks which mainly presented as OAS. Considerable IgE cross-reactivity was observed between Api g 2, Art v 3, and Pru p 3 with varying inhibition degrees of individual patients' sera. Simulating LTP mono-sensitization in a mouse model showed development of more congruent antibody specificities between Api g 2 and Art v 3. Notably, biologically relevant murine IgE cross-reactivity was restricted to the latter and diverse from Pru p 3 epitopes. Endolysosomal processing of LTP showed generation of similar clusters, which presumably represent T-cell peptides. Conclusions: Api g 2 represents a relevant celery stalk allergen in the LTP-sensitized population. The molecule displays common B cell epitopes and endolysosomal peptides that encompass T cell epitopes with pollen and plant-food derived LTP.Christian-Doppler Research Association, Biomay AG, Vienna, AustriaItalian Ministry of Healt
Trypacidin, a Spore-Borne Toxin from Aspergillus fumigatus, Is Cytotoxic to Lung Cells
Inhalation of Aspergillus fumigatus conidia can cause severe aspergillosis in immunosuppressed people. A. fumigatus produces a large number of secondary metabolites, some of which are airborne by conidia and whose toxicity to the respiratory tract has not been investigated. We found that spores of A. fumigatus contain five main compounds, tryptoquivaline F, fumiquinazoline C, questin, monomethylsulochrin and trypacidin. Fractionation of culture extracts using RP-HPLC and LC-MS showed that samples containing questin, monomethylsulochrin and trypacidin were toxic to the human A549 lung cell line. These compounds were purified and their structure verified using NMR in order to compare their toxicity against A549 cells. Trypacidin was the most toxic, decreasing cell viability and triggering cell lysis, both effects occurring at an IC50 close to 7 µM. Trypacidin toxicity was also observed in the same concentration range on human bronchial epithelial cells. In the first hour of exposure, trypacidin initiates the intracellular formation of nitric oxide (NO) and hydrogen peroxide (H2O2). This oxidative stress triggers necrotic cell death in the following 24 h. The apoptosis pathway, moreover, was not involved in the cell death process as trypacidin did not induce apoptotic bodies or a decrease in mitochondrial membrane potential. This is the first time that the toxicity of trypacidin to lung cells has been reported
Recommended from our members
Report on the sixth blind test of organic crystal structure prediction methods.
The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.The organisers and participants are very grateful to the crystallographers who supplied the candidate structures: Dr. Peter Horton (XXII), Dr. Brian Samas (XXIII), Prof. Bruce Foxman (XXIV), and Prof. Kraig Wheeler (XXV and XXVI). We are also grateful to Dr. Emma Sharp and colleagues at Johnson Matthey (Pharmorphix) for the polymorph screening of XXVI, as well as numerous colleagues at the CCDC for assistance in organising the blind test. Submission 2: We acknowledge Dr. Oliver Korb for numerous useful discussions. Submission 3: The Day group acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton, in the completion of this work. We acknowledge funding from the EPSRC (grants EP/J01110X/1 and EP/K018132/1) and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC through grant agreements n. 307358 (ERC-stG- 2012-ANGLE) and n. 321156 (ERC-AG-PE5-ROBOT). Submission 4: I am grateful to Mikhail Kuzminskii for calculations of molecular structures on Gaussian 98 program in the Institute of Organic Chemistry RAS. The Russian Foundation for Basic Research is acknowledged for financial support (14-03-01091). Submission 5: Toine Schreurs provided computer facilities and assistance. I am grateful to Matthew Habgood at AWE company for providing a travel grant. Submission 6: We would like to acknowledge support of this work by GlaxoSmithKline, Merck, and Vertex. Submission 7: The research was financially supported by the VIDI Research Program 700.10.427, which is financed by The Netherlands Organisation for Scientific Research (NWO), and the European Research Council (ERC-2010-StG, grant agreement n. 259510-KISMOL). We acknowledge the support of the Foundation for Fundamental Research on Matter (FOM). Supercomputer facilities were provided by the National Computing Facilities Foundation (NCF). Submission 8: Computer resources were provided by the Center for High Performance Computing at the University of Utah and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1053575. MBF and GIP acknowledge the support from the University of Buenos Aires and the Argentinian Research Council. Submission 9: We thank Dr. Bouke van Eijck for his valuable advice on our predicted structure of XXV. We thank the promotion office for TUT programs on advanced simulation engineering (ADSIM), the leading program for training brain information architects (BRAIN), and the information and media center (IMC) at Toyohashi University of Technology for the use of the TUT supercomputer systems and application software. We also thank the ACCMS at Kyoto University for the use of their supercomputer. In addition, we wish to thank financial supports from Conflex Corp. and Ministry of Education, Culture, Sports, Science and Technology. Submission 12: We thank Leslie Leiserowitz from the Weizmann Institute of Science and Geoffrey Hutchinson from the University of Pittsburgh for helpful discussions. We thank Adam Scovel at the Argonne Leadership Computing Facility (ALCF) for technical support. Work at Tulane University was funded by the Louisiana Board of Regents Award # LEQSF(2014-17)-RD-A-10 “Toward Crystal Engineering from First Principles”, by the NSF award # EPS-1003897 “The Louisiana Alliance for Simulation-Guided Materials Applications (LA-SiGMA)”, and by the Tulane Committee on Research Summer Fellowship. Work at the Technical University of Munich was supported by the Solar Technologies Go Hybrid initiative of the State of Bavaria, Germany. Computer time was provided by the Argonne Leadership Computing Facility (ALCF), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. Submission 13: This work would not have been possible without funding from Khalifa University’s College of Engineering. I would like to acknowledge Prof. Robert Bennell and Prof. Bayan Sharif for supporting me in acquiring the resources needed to carry out this research. Dr. Louise Price is thanked for her guidance on the use of DMACRYS and NEIGHCRYS during the course of this research. She is also thanked for useful discussions and numerous e-mail exchanges concerning the blind test. Prof. Sarah Price is acknowledged for her support and guidance over many years and for providing access to DMACRYS and NEIGHCRYS. Submission 15: The work was supported by the United Kingdom’s Engineering and Physical Sciences Research Council (EPSRC) (EP/J003840/1, EP/J014958/1) and was made possible through access to computational resources and support from the High Performance Computing Cluster at Imperial College London. We are grateful to Professor Sarah L. Price for supplying the DMACRYS code for use within CrystalOptimizer, and to her and her research group for support with DMACRYS and feedback on CrystalPredictor and CrystalOptimizer. Submission 16: R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. [EP/J017639/1]. R. J. N. and C. J. P. acknowledge use of the Archer facilities of the U.K.’s national high-performance computing service (for which access was obtained via the UKCP consortium [EP/K014560/1]). C. J. P. also acknowledges a Leadership Fellowship Grant [EP/K013688/1]. B. M. acknowledges Robinson College, Cambridge, and the Cambridge Philosophical Society for a Henslow Research Fellowship. Submission 17: The work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1- 0387 and by the National Science Foundation Grant CHE-1152899. The work at the University of Silesia was supported by the Polish National Science Centre Grant No. DEC-2012/05/B/ST4/00086. Submission 18: We would like to thank Constantinos Pantelides, Claire Adjiman and Isaac Sugden of Imperial College for their support of our use of CrystalPredictor and CrystalOptimizer in this and Submission 19. The CSP work of the group is supported by EPSRC, though grant ESPRC EP/K039229/1, and Eli Lilly. The PhD students support: RKH by a joint UCL Max-Planck Society Magdeburg Impact studentship, REW by a UCL Impact studentship; LI by the Cambridge Crystallographic Data Centre and the M3S Centre for Doctoral Training (EPSRC EP/G036675/1). Submission 19: The potential generation work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1-0387 and by the National Science Foundation Grant CHE-1152899. Submission 20: The work at New York University was supported, in part, by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number W911NF-13-1-0387 (MET and LV) and, in part, by the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation under Award Number DMR-1420073 (MET and ES). The work at the University of Delaware was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number W911NF-13-1- 0387 and by the National Science Foundation Grant CHE-1152899. Submission 21: We thank the National Science Foundation (DMR-1231586), the Government of Russian Federation (Grant No. 14.A12.31.0003), the Foreign Talents Introduction and Academic Exchange Program (No. B08040) and the Russian Science Foundation, project no. 14-43-00052, base organization Photochemistry Center of the Russian Academy of Sciences. Calculations were performed on the Rurik supercomputer at Moscow Institute of Physics and Technology. Submission 22: The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). Submission 24: The potential generation work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1-0387 and by the National Science Foundation Grant CHE-1152899. Submission 25: J.H. and A.T. acknowledge the support from the Deutsche Forschungsgemeinschaft under the program DFG-SPP 1807. H-Y.K., R.A.D., and R.C. acknowledge support from the Department of Energy (DOE) under Grant Nos. DE-SC0008626. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. Additional computational resources were provided by the Terascale Infrastructure for Groundbreaking Research in Science and Engineering (TIGRESS) High Performance Computing Center and Visualization Laboratory at Princeton University.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1107/S2052520616007447
Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
Retro-trochanteric sciatica-like pain: current concept
The aim of this manuscript is to review the current knowledge in terms of retro-trochanteric pain syndrome, make recommendations for diagnosis and differential diagnosis and offer suggestions for treatment options. The terminology in the literature is confusing and these symptoms can be referred to as ‘greater trochanteric pain syndrome’, ‘trochanteric bursitis’ and ‘trochanteritis’, among other denominations. The authors focus on a special type of sciatica, i.e. retro-trochanteric pain radiating down to the lower extremity. The impact of different radiographic assessments is discussed. The authors recommend excluding pathology in the spine and pelvic area before following their suggested treatment algorithm for sciatica-like retro-trochanteric pain. Level of evidence II
- …