76 research outputs found

    Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia

    Get PDF
    Resistance of leukemic cells to chemotherapeutic agents is associated with an unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate the underlying mechanisms of cellular drug resistance, the activation of various apoptotic parameters in leukemic cells from 50 children with ALL was studied after in vitro exposure with 4 important drugs in ALL therapy (prednisolone, vincristine, l-asparaginase, and daunorubicin). Exposure to each drug resulted in early induction of phosphatidylserine (PS) externalization and mitochondrial transmembrane (Deltapsim) depolarization followed by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) inactivation in the majority of patients. For all 4 drugs, a significant inverse correlation was found between cellular drug resistance and (1) the percentage of cells with PS externalization (<.001 < P <.008) and (2) the percentage of cells with Deltapsim depolarization (.002 < P <.02). However, the percentage of cells with caspase-3 activation and the percentage of cells with PARP inactivation showed a significant inverse correlation with cellular resistance for prednisolone (P =.001; P =.001) and l-asparaginase (P =.01; P =.001) only. This suggests that caspase-3 activation and PARP inactivation are not essential for vincristine- and daunorubicin-induced apoptosis. In conclusion, resistance to 4 unrelated drugs is associated with defect(s) upstream or at the level of PS externalization and Deltapsim depolarization. This leads to decreased activation of apoptotic parameters in resistant cases of pediatric AL

    Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia

    Get PDF
    Drug resistance in childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) is associated with impaired ability to induce apoptosis. To elucidate causes of apoptotic defects, we studied the protein expression of Apaf-1, procaspases-2, -3, -6, -7, -8, -10, and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) in cells from children with acute lymphoblastic leukemia (ALL; n = 43) and acute myeloid leukemia (AML; n = 10). PARP expression was present in all B-lineage samples, but absent in 4 of 15 T-lineage ALL samples and 3 of 10 AML cases, which was not caused by genomic deletions. PARP expression was a median 7-fold lower in T-lineage ALL (P < .001) and 10-fold lower in AML (P < .001) compared with B-lineage ALL. PARP expression was 4-fold lower in prednisolone, vincristine and L-asparaginase (PVA)-resistant compared with PVA-sensitive ALL patients (P < .001). Procaspase-2 expression was 3-fold lower in T-lineage ALL (P = .022) and AML (P = .014) compared with B-lineage ALL. In addition, procaspase-2 expression was 2-fold lower in PVA-resistant compared to PVA-sensitive ALL patients (P = .042). No relation between apoptotic protease-activating factor 1 (Apaf-1), procaspases-3, -6, -7, -8, -10, and drug resistance was found. In conclusion, low baseline expression of PARP and procaspase-2 is related to cellular drug resistance in childhood acute lymphoblastic leukemia

    Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia

    Get PDF
    Resistance to L-asparaginase in leukemic cells may be caused by an elevated cellular expression of asparagine synthetase (AS). Previously, we reported that high AS expression did not correlate to L-asparaginase resistance in TEL-AML1-positive B-lineage acute lymphoblastic leukemia (ALL). In the present study we confirmed this finding in TEL-AML1-positive patients (n = 28) using microarrays. In contrast, 35 L-asparaginase-resistant TEL-AML1-negative B-lineage ALL patients had a significant 3.5-fold higher AS expression than 43 sensitive patients (P < .001). Using real-time quantitative polymerase chain reaction (RTQ-PCR), this finding was confirmed in an independent group of 39 TEL-AML1-negative B-lineage ALL patients (P = .03). High expression of AS was associated with poor prognosis (4-year probability of disease-free survival [pDFS] 58% +/- 11%) compared with low expression (4-year pDFS 83% +/- 7%; P = .009). We conclude that resistance to l-asparaginase and relapse risk are associated with high expression of AS in TEL-AML1-negative but not TEL-AML1-positive B-lineage ALL
    corecore