6 research outputs found

    Circulating CD34+ Progenitor Cells and Risk of Mortality in a Population with Coronary Artery Disease

    Get PDF
    RATIONALE: Low circulating progenitor cell (PC) numbers and activity may reflect impaired intrinsic regenerative/reparative potential, but it remains uncertain whether this translates into a worse prognosis. OBJECTIVES: To investigate whether low numbers of PCs associate with a greater risk of mortality in a population at high cardiovascular risk. METHODS & RESULTS: Patients undergoing coronary angiography were recruited into two cohorts (1, n=502 and 2, n=403) over separate time periods. PCs were enumerated by flow cytometry as CD45(med+) blood mononuclear cells expressing CD34, with additional quantification of subsets co-expressing CD133, VEGFR2 and CXCR4. Coefficient of variation for CD34 cells was 2.9% and 4.8%, 21.6% and 6.5% for the respective subsets. Each cohort was followed for a mean of 2.7 and 1.2 years, respectively, for the primary endpoint of all-cause death. There was an inverse association between CD34+ and CD34+/CD133+ cell counts and risk of death in Cohort 1 (β=−0.92, p=0.043 and β=−1.64, p=0.019, respectively) that was confirmed in Cohort 2 (β=−1.25, p=0.020 and β=−1.81, p=0.015, respectively). Covariate adjusted HRs in the pooled cohort (n=905) were 3.54 (1.67-7.50) and 2.46 (1.18-5.13), respectively. CD34+/CD133+ cell counts improved risk prediction metrics beyond standard risk factors. CONCLUSION: Reduced circulating PC counts, identified primarily as CD34+ mononuclear cells or its subset expressing CD133 are associated with risk of death in individuals with coronary artery disease, suggesting that impaired endogenous regenerative capacity is associated with increased mortality. These findings have implications for biological understanding, risk prediction and cell selection for cell based therapies

    Added value of magnetic resonance spectroscopy for diagnosing childhood cerebellar tumours

    Get PDF
    1H‐magnetic resonance spectroscopy (MRS) provides noninvasive metabolite profiles with the potential to aid the diagnosis of brain tumours. Prospective studies of diagnostic accuracy and comparisons with conventional MRI are lacking. The aim of the current study was to evaluate, prospectively, the diagnostic accuracy of a previously established classifier for diagnosing the three major childhood cerebellar tumours, and to determine added value compared with standard reporting of conventional imaging. Single‐voxel MRS (1.5 T, PRESS, TE 30 ms, TR 1500 ms, spectral resolution 1 Hz/point) was acquired prospectively on 39 consecutive cerebellar tumours with histopathological diagnoses of pilocytic astrocytoma, ependymoma or medulloblastoma. Spectra were analysed with LCModel and predefined quality control criteria were applied, leaving 33 cases in the analysis. The MRS diagnostic classifier was applied to this dataset. A retrospective analysis was subsequently undertaken by three radiologists, blind to histopathological diagnosis, to determine the change in diagnostic certainty when sequentially viewing conventional imaging, MRS and a decision support tool, based on the classifier. The overall classifier accuracy, evaluated prospectively, was 91%. Incorrectly classified cases, two anaplastic ependymomas, and a rare histological variant of medulloblastoma, were not well represented in the original training set. On retrospective review of conventional MRI, MRS and the classifier result, all radiologists showed a significant increase (Wilcoxon signed rank test, p < 0.001) in their certainty of the correct diagnosis, between viewing the conventional imaging and MRS with the decision support system. It was concluded that MRS can aid the noninvasive diagnosis of posterior fossa tumours in children, and that a decision support classifier helps in MRS interpretation
    corecore