2 research outputs found
Virus Replication as a Phenotypic Version of Polynucleotide Evolution
In this paper we revisit and adapt to viral evolution an approach based on
the theory of branching process advanced by Demetrius, Schuster and Sigmund
("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46
(1985) 239-262), in their study of polynucleotide evolution. By taking into
account beneficial effects we obtain a non-trivial multivariate generalization
of their single-type branching process model. Perturbative techniques allows us
to obtain analytical asymptotic expressions for the main global parameters of
the model which lead to the following rigorous results: (i) a new criterion for
"no sure extinction", (ii) a generalization and proof, for this particular
class of models, of the lethal mutagenesis criterion proposed by Bull,
Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18
(2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with
a quantitative prescription for its evaluation, (iv) the quantitative
description of the evolution of the expected values in in four distinct
"stages": extinction threshold, lethal mutagenesis, stationary "equilibrium"
and transient. Finally, based on these quantitative results we are able to draw
some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text
overlap with arXiv:1110.336