44 research outputs found

    Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial

    Get PDF
    Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1–seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen

    Early Induction and Maintenance of Env-Specific T-Helper Cells following Human Immunodeficiency Virus Type 1 Infection

    No full text
    Mounting evidence points to a role for CD4(+) T-helper (Th) cell activities in controlling human immunodeficiency virus type 1 (HIV-1) infection. To determine the induction and evolution of Th responses following acute infection, we prospectively analyzed Env- and Gag-specific Th responses longitudinally for 92 patients with acute (n = 28) or early (n = 64) HIV-1 infection (median, 55 days postinfection [DPI]). The probability of detecting HIV-1-specific lymphoproliferative responses was remarkably low, and when present, the responses were more likely to be Gag specific than Env specific (16 versus 5%). Env-specific responses were significantly more common in patients presenting at <30 DPI than in those presenting at 30 to 365 DPI (21 versus 0.5%, P = 0.001). By contrast, Gag-specific responses occurred with similar frequencies among subjects presenting at <30 DPI and 30 to 365 DPI (13 versus 17%, P = 0.6). After treatment, and regardless of the duration of infection before therapy, Gag-specific Th responses predominated. Furthermore, some acutely infected subjects lost detectable Env-specific Th proliferative responses, which failed to reemerge upon treatment. Detailed analysis for one such subject revealed Env-specific lymphoproliferation at 11 DPI but no detectable Env-specific lymphoproliferation or ex vivo gamma interferon (IFN-γ) secretion at multiple subsequent time points. Env-specific CD4(+) T-cell clones from 11 DPI recognized six epitopes in both conserved and variable regions within gp120 and gp41, exhibited major histocompatibility complex-restricted cytotoxicity, and secreted high levels of antiviral cytokines. T-cell receptor clonal transcript analyses and autologous virus sequencing revealed that Th cells induced during acute infection were maintained and there were no Th escape mutations. Subsequent analysis for this subject and six of seven others revealed detectable IFN-γ-secreting cells, but only following in vitro gp160 stimulation. In summary, we conclude that Env-specific Th responses are elicited very early in acute infection and may precede Gag-specific responses. The inability to detect Env-specific Th responses over time and despite antiretroviral therapy may reflect low frequencies and impaired proliferative capacity, and viral escape is not necessary for this to occur

    Prevalence and impact of minority variant drug resistance mutations in primary HIV-1 infection.

    Get PDF
    To evaluate minority variant drug resistance mutations detected by the oligonucleotide ligation assay (OLA) but not consensus sequencing among subjects with primary HIV-1 infection.Observational, longitudinal cohort study. Consensus sequencing and OLA were performed on the first available specimens from 99 subjects enrolled after 1996. Survival analyses, adjusted for HIV-1 RNA levels at the start of antiretroviral (ARV) therapy, evaluated the time to virologic suppression (HIV-1 RNA<50 copies/mL) among subjects with minority variants conferring intermediate or high-level resistance.Consensus sequencing and OLA detected resistance mutations in 5% and 27% of subjects, respectively, in specimens obtained a median of 30 days after infection. Median time to virologic suppression was 110 (IQR 62-147) days for 63 treated subjects without detectable mutations, 84 (IQR 56-109) days for ten subjects with minority variant mutations treated with ≥3 active ARVs, and 104 (IQR 60-162) days for nine subjects with minority variant mutations treated with <3 active ARVs (p = .9). Compared to subjects without mutations, time to virologic suppression was similar for subjects with minority variant mutations treated with ≥3 active ARVs (aHR 1.2, 95% CI 0.6-2.4, p = .6) and subjects with minority variant mutations treated with <3 active ARVs (aHR 1.0, 95% CI 0.4-2.4, p = .9). Two subjects with drug resistance and two subjects without detectable resistance experienced virologic failure.Consensus sequencing significantly underestimated the prevalence of drug resistance mutations in ARV-naïve subjects with primary HIV-1 infection. Minority variants were not associated with impaired ARV response, possibly due to the small sample size. It is also possible that, with highly-potent ARVs, minority variant mutations may be relevant only at certain critical codons

    Causal prophylactic efficacy of ganaplacide (KAF156) in a controlled human malaria infection model

    No full text
    Abstract BACKGROUND KAF156 is a novel antimalarial drug that is active against both liver- and blood- stage Plasmodium parasites, including drug-resistant strains. Here, we investigated the causal prophylactic efficacy of KAF156 in a controlled human malaria infection (CHMI) model. METHODS In Part 1, healthy, malaria-naïve participants received 800 mg KAF156 or placebo three hours before CHMI with P. falciparum-infected mosquitoes. In Part 2, KAF156 was administered as single doses of 800, 300, 100, 50, or 20 mg 21 hours post-CHMI. All participants received atovaquone/proguanil treatment if blood-stage infection was detected or on day 29. For each cohort, 7-14 subjects were enrolled to KAF156 treatment and up to four subjects to placebo. RESULTS KAF156 at all dose levels was safe and well tolerated. Two serious adverse events were reported - both resolved without sequelae and neither was considered related to KAF156. In Part 1, all participants treated with KAF156 and none of those randomized to placebo were protected against malaria infection. In Part 2, all participants treated with placebo or 20 mg KAF156 developed malaria infection. In contrast, 50 mg KAF156 protected 3/14 participants from infection, and doses of 800, 300, and 100 mg KAF156 protected all subjects against infection. An exposure-response analysis suggested that a 24-hour post-dose concentration of KAF156 of 21.5 ng/mL (90% CI 17.66 to 25.32 ng/mL) would ensure a 95% chance of protection from malaria parasite infection. CONCLUSIONS KAF156 was safe and well tolerated and demonstrated high levels of pre- and post-CHMI protective efficacy. (Funded by Novartis
    corecore