2 research outputs found
Profiling Antibiotic Resistance in Acinetobacter calcoaceticus
Background: Acinetobacter spp. have emerged as troublesome pathogens due to their multi-drug resistance. The majority of the work to date has focused on the antibiotic resistance profile of Acinetobacter baumannii. Although A. calcoaceticus strains are isolated in the hospital setting, limited information is available on these closely related species. Methods & Results: The computational analysis of antibiotic resistance genes in 1441 Acinetobacter genomes revealed that A. calcoaceticus harbored a similar repertoire of multi-drug efflux pump and beta-lactam resistance genes as A. baumannii, leading us to speculate that A. calcoaceticus would have a similar antibiotic resistance profile to A. baumannii. To profile the resistance patterns of A. calcoaceticus, strains were examined by Kirby–Bauer disk diffusion and phenotypic microarrays. We found that Acinetobacter strains were moderately to highly resistant to certain antibiotics within fluoroquinolones, aminoglycosides, tetracyclines, and other antibiotic classes. These data indicate that A. calcoaceticus has a similar antibiotic resistance profile as A. baumannii ATCC 19606. We also identified that all Acinetobacter species were sensitive to 5-fluoroorotic acid, novobiocin, and benzethonium chloride. Conclusion: Collectively, these data provide new insights into the antibiotic resistance in A. calcoaceticus and identify several antibiotics that could be beneficial in treating Acinetobacter infections
Primary cilia defects causing mitral valve prolapse
Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP